首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度强化学习的协作通信中继选择
引用本文:胡文杰,钟良骥. 基于深度强化学习的协作通信中继选择[J]. 国际商务研究, 2020, 60(12)
作者姓名:胡文杰  钟良骥
作者单位:1.华中科技大学 计算机科学与技术学院,武汉 430074;2.咸宁职业技术学院 信息工程学院,湖北 咸宁 437100;3.湖北科技学院 计算机学院,湖北 咸宁 437100
基金项目:湖北省教育厅科学研究项目(B2018487);咸宁市科技局科技项目(201854);咸宁职业技术学院校级科研项目(2017yjd011)
摘    要:协作通信是无线传感器网络(Wireless Sensor Network,WSN)实现数据可靠传输的关键技术,而协作通信技术的关键在于中继方案的选择。为此,提出了一种基于深度强化学习的协作通信中继选择算法(Deep Q-Learning Based Relay Selection Scheme,DQ-RSS)。首先,将WSN中具有中继选择的协作通信过程建模为马尔科夫决策过程,并采用Q学习在未知网络模型的情况下获取最佳中继选择策略;其次,针对高维状态空间下Q学习收敛时间长的问题,采用DQN(Deep-Q-Net)算法来加速Q学习的收敛。对比仿真实验结果表明,DQ-RSS在中断概率、系统容量和能耗方面均优于现有的中继选择方案,且能够有效节省收敛时间。

关 键 词:无线传感器网络;协作通信;中继选择;Q学习;DQN算法

Collaborative Communication Relay Selection Based on Deep Reinforcement Learning
HU Wenjie,ZHONG Liangji. Collaborative Communication Relay Selection Based on Deep Reinforcement Learning[J]. International Business Research, 2020, 60(12)
Authors:HU Wenjie  ZHONG Liangji
Abstract:Cooperative communication is the key technology for wireless sensor network(WSN) to achieve reliable data transmission,and the key to cooperative communication technology is the choice of relay scheme.Therefore,a cooperative communication relay selection algorithm based on deep reinforcement learning called DQ-RSS is proposed.First,the cooperative communication process with relay selection in WSN is modeled as a Markov decision process,and Q-Learning is used to obtain the best relay selection strategy in the case of unknown network models.Secondly,for the problem of long Q-Learning convergence time in high-dimensional state space,Deep-Q-Net(DQN) algorithm is used to accelerate the convergence of Q-Learning.Comparative simulation experiments show that DQ-RSS is superior to existing relay selection schemes in terms of outage probability,system capacity and energy consumption,and can effectively save convergence time.
Keywords:wireless sensor network  cooperative communication  relay selection  Q-Learning  DQN algorithm
点击此处可从《国际商务研究》浏览原始摘要信息
点击此处可从《国际商务研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号