首页 | 本学科首页   官方微博 | 高级检索  
     

边坡影响因素的自组织神经网络归类处理
引用本文:刘思思. 边坡影响因素的自组织神经网络归类处理[J]. 企业技术开发, 2005, 24(11): 35-36,54
作者姓名:刘思思
作者单位:中南林学院建筑工程学院,湖南长沙410011
摘    要:文章根据自组织神经网络的基本原理,结合55个边坡实例,应用matlab进行编程,建立了边坡影响因素分类处理的神经网络模型,并运用该模型对不同的边坡进行了分类,分类结果提高了神经网络的边坡指标数据的学习效率,从而证明了自组织神经网络对提高用于预测边坡稳定性神经网络性能的有效性。

关 键 词:自组织神经网络  指标  归类
文章编号:1006-8937(2005)11-0035-02
收稿时间:2005-08-22
修稿时间:2005-08-22

The classification of the factors of the stability of slopes by self-orgnizing neural networks
LIU Si-si. The classification of the factors of the stability of slopes by self-orgnizing neural networks[J]. Technological Development of Enterprise, 2005, 24(11): 35-36,54
Authors:LIU Si-si
Affiliation:Building Engineering College, Central South Forestry University, Changsha, Hunan 410011, China
Abstract:According to the basic principle of the self-organizing neural networks, combining the 55 slopes' data to be the example, applying the matlab, this paper built up the neural network of the processing model of slope's factors classification, and made use of the model to classify different slopes. The result of the classification raised the study efficiency of the neural networks, thus it proved that the self-organizing neural networks is useful for promoting the capability of the neural networks used for predicting the slope stability.
Keywords:self-organizing neural networks   factor   classification
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号