首页 | 本学科首页   官方微博 | 高级检索  
     


A hybrid commodity price‐forecasting model applied to the sugar–alcohol sector
Authors:Celma O. Ribeiro  Sydnei M. Oliveira
Abstract:Accurate price forecasting for agricultural commodities can have significant decision‐making implications for suppliers, especially those of biofuels, where the agriculture and energy sectors intersect. Environmental pressures and high oil prices affect demand for biofuels and have reignited the discussion about effects on food prices. Suppliers in the sugar–alcohol sector need to decide the ideal proportion of ethanol and sugar to optimise their financial strategy. Prices can be affected by exogenous factors, such as exchange rates and interest rates, as well as non‐observable variables like the convenience yield, which is related to supply shortages. The literature generally uses two approaches: artificial neural networks (ANNs), which are recognised as being in the forefront of exogenous‐variable analysis, and stochastic models such as the Kalman filter, which is able to account for non‐observable variables. This article proposes a hybrid model for forecasting the prices of agricultural commodities that is built upon both approaches and is applied to forecast the price of sugar. The Kalman filter considers the structure of the stochastic process that describes the evolution of prices. Neural networks allow variables that can impact asset prices in an indirect, nonlinear way, what cannot be incorporated easily into traditional econometric models.
Keywords:commodities  forecasting models  Kalman filter  neural networks
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号