首页 | 本学科首页   官方微博 | 高级检索  
     

基于时间序列的支持向量机在物流预测中的应用
引用本文:唐伟鸿,李文锋. 基于时间序列的支持向量机在物流预测中的应用[J]. 物流科技, 2005, 28(1): 8-11
作者姓名:唐伟鸿  李文锋
作者单位:1. 武汉理工大学,湖北,武汉,430063;深圳市壹远投资有限公司,广东,深圳,518000
2. 武汉理工大学,湖北,武汉,430063
摘    要:由于物流预测是不确定的、非线性的、动态开放性的复杂大系统,传统方法往往难以准确地描述这种复杂的非线性特征,因而无法准确进行物流预测,本文提出了基于一种基于时间序列的支持向量机(SVM)的物流预测方法。将该方法用于实际物流系统的公路运输量预测中,和真实值比较说明所提出的物流预测方法是可行和有效的。

关 键 词:物流系统 预测方法 动态开放性 公路运输量 不确定 准确 复杂大系统 基于时间 支持向量机(SVM) 序列
文章编号:1002-3100(2005)01-0008-04

Application of Support Vector Machines Based on Time Sequence in Logistics Forecasting
TANG Wei-hong,LI Wen-feng. Application of Support Vector Machines Based on Time Sequence in Logistics Forecasting[J]. Logistics Management, 2005, 28(1): 8-11
Authors:TANG Wei-hong  LI Wen-feng
Affiliation:TANG Wei-hong1,2,LI Wen-feng1
Abstract:Because logistics system forecasting was a uncertain, nonlinear, dynamic and complicated system, it was difficult to describe such a nonlinear characteristics of this system by traditional methods, so the logistics forecasting could not be accurately forecasted. The authors presented a novel load forecasting method which is an improved support vector machines (SVM) algorithm based on time sequence applying the presented method to actual traffic forecasting of highway in logistics system, the comparison among the forecasted results and the true shows that the presented method is feasible and effective.
Keywords:logistics system  logistics forecasting  time sequence  support vector machines (SVM)
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号