The greenhouse effect: Damages,costs and abatement |
| |
Authors: | Robert U. Ayres Jörg Walter |
| |
Affiliation: | (1) Department of Engineering & Public Policy, Pittsburgh, PA, USA;(2) Department of Computer Science, University of Illinois, Champagne-Urbana, IL, USA |
| |
Abstract: | The buildup of so-called greenhouse gases in the atmosphere — CO2 in particular-appears to be having an adverse impact on the global climate. This paper briefly reviews current expectations with regard to physical and biological effects, their potential costs to society, and likely costs of abatement. For a worst case scenario it is impossible to assess, in economic terms, the full range of possible non-linear synergistic effects. In the most favorable (although not necessarily likely) case (of slow-paced climate change), however, it seems likely that the impacts are within the affordable range, at least in the industrialized countries of the world. In the third world the notion of affordability is of doubtful relevance, making the problem of quantitative evaluation almost impossible. We tentatively assess the lower limit of quantifiable climate-induced damages at $30 to $35 per ton of CO2 equivalent, worldwide, with the major damages being concentrated in regions most adversely affected by sea-level rise. The non-quantifiable environmental damages are also significant and should by no means be disregarded.The costs and benefits of (1) reducing CFC use and (2) reducing fossil fuel consumption, as a means of abatement, are considered in some detail. This strategy has remarkably high indirect benefits in terms of reduced air pollution damage and even direct cost savings to consumers. The indirect benefits of reduced air pollution and its associated health and environmental effects from fossil-fuel combustion in the industrialized countries range from $20 to $60 per ton of CO2 eliminated. In addition, there is good evidence that modest (e.g. 25%) reductions in CO2 emissions may be achievable by the U.S. (and, by implication, for other countries) by a combination of increased energy efficiency and restructuring that would permit simultaneous direct economic benefits (savings) to energy consumers of the order of $50 per ton of CO2 saved. A higher level of overall emissions reduction — possibly approaching 50% — could probably be achieved, at little or not net cost, by taking advantage of these savings.We suggest the use of taxes on fossil fuel extraction (or a carbon tax) as a reasonable way of inducing the structural changes that would be required to achieve significant reduction in energy use and CO2 emissions. To minimize the economic burden (and create a political constituency in support of the approach) we suggest the substitution of resource-based taxes in general for other types of taxes (on labor, income, real estate, or trade) that are now the main sources of government revenue. While it is conceded that it would be difficult to calculate the optimal tax on extractive resources, we do not think this is a necessary prerequisite to policy-making. In fact, we note that the existing tax system has never been optimized according to theoretical principles, and is far from optimal by any reasonable criteria.During the academic year 1989–90 Dr. Ayres was at the International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria.During the summer of 1989 Mr. Walter was a member of the Young Scientists' Summer Program at IIASA. |
| |
Keywords: | Atmosphere benefits carbon climate conservation damages emissions energy greenhouse policy |
本文献已被 SpringerLink 等数据库收录! |
|