首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量回归的服务备件需求量预测研究
引用本文:黄远兵,蔡启明,杨玮龙,黄燕美. 基于支持向量回归的服务备件需求量预测研究[J]. 物流科技, 2006, 29(10): 95-97
作者姓名:黄远兵  蔡启明  杨玮龙  黄燕美
作者单位:1. 南京航空航天大学,江苏,南京,210016
2. 东南大学,江苏,南京,210096
摘    要:随着市场竞争的日益激烈,售后维修服务成为一种有效的竞争手段.作为维修服务物质基础的备件,在服务中具有决定性的作用,所以服务备件物流管理在实践上得到越来越多的重视.本文将基于支持向量回归的数据挖掘方法,用于服务备件需求预测研究中.并结合实例,讨论了支持向量回归在汽车维修服务备件需求预测中的应用及其特点.

关 键 词:服务备件物流  支持向量回归  统计学习理论  需求预测
文章编号:1002-3100(2006)10-0095-03
收稿时间:2006-03-20
修稿时间:2006-03-20

Research of Spare Parts Requirement Prediction Based on Support Vector Regression
HUANG Yuan-bing,CAI Qi-ming,YANG Wei-long,HUANG Yan-mei. Research of Spare Parts Requirement Prediction Based on Support Vector Regression[J]. Logistics Management, 2006, 29(10): 95-97
Authors:HUANG Yuan-bing  CAI Qi-ming  YANG Wei-long  HUANG Yan-mei
Affiliation:1. Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; 2. Southeast University, Nanjing 210096, China
Abstract:Owing to the fierce competition of the market, after service is becoming an effective means of competition. As the foundation of after service, spare parts play a vital role. Spare parts logistics get more and more emphasis. This paper applies a new data mining method based on SVR(support vector regression)in the prediction of the spare parts requirement. And combining with the example, discusses the application and features of SVR in the prediction of the spare parts requirement.
Keywords:spare parts logistics   SVR   statistical learning theory   requirement prediction
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号