首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of Global Warming on Precipitation Extremes: Dependence on Storm Characteristics
Authors:Abhishek Gaur  Andre Schardong  Slobodan Simonovic
Institution:1.National Research Council Canada,Ottawa,Canada;2.Facility for Intelligent Decision Support, Department of Civil and Environmental Engineering,Western University,London,Canada
Abstract:This study investigates the relationship between historically observed changes in extreme precipitation magnitudes and temperature (Pex-T relationship) at multiple locations in Canada. The focus is on understanding the behavior of these relationships with regards to key storm characteristics such as its duration, season of occurrence, and location. To do so, three locations are chosen such that they have large amounts of moisture available near them whereas four locations are chosen such that they are located in the land-locked regions of Canada and subsequently have no nearby moisture source available on them. To investigate the effect of different storm durations on Pex-T relationship, storms of durations: 5, 10, 15, 30 min, 1, 2, 6, 12, 24 h are considered. Finally, Pex-T relationship is analyzed separately for summer and winter seasons to quantify the influence of seasons. Results indicate strong influences of storm duration, season of occurrence, and location on observed precipitation scaling rates. Drastic intensification of precipitation extremes with temperature is obtained for shorter duration precipitation events than for longer duration precipitation events, in summers than in the winters. Furthermore, in summertime, increases in the intensity of convection driven precipitation extremes is found highest at locations away from large waterbodies. On the other hand, in wintertime most drastic increases in extreme precipitation are obtained at locations near large waterbodies. These findings contribute towards increasing the current understanding of precipitation extremes in the context of rapidly increasing global temperatures.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号