首页 | 本学科首页   官方微博 | 高级检索  
     

基于混频模型的高阶矩最优因子个数识别研究
引用本文:杨冬,康继军,鲁万波. 基于混频模型的高阶矩最优因子个数识别研究[J]. 数量经济技术经济研究, 2020, 37(1): 141-164
作者姓名:杨冬  康继军  鲁万波
作者单位:重庆大学经济与工商管理学院;西南财经大学统计学院
基金项目:国家自然科学基金;新世纪优秀人才支持计划;中央高校基本科研业务费专项
摘    要:研究目标:在构建包含偏度和峰度的高阶矩投资组合情况下,为了减少设定误差的同时进一步降低传统朴素估计存在的较高估计误差,本文构建了混频多因子模型并提出了一种新的包含高阶矩条件下最优因子个数识别方法,并探讨了其适用性。研究方法:在理论上分析了基于混频多因子模型得到统计量的渐进性质,并通过蒙特卡洛模拟在有限样本条件下进行了检验。研究发现:新方法可以更为准确地识别包含高阶矩条件下最优因子的个数,相对于基于信息准则构建的高阶矩因子个数识别方法具有明显的优势。研究创新:基于混频模型方法,进一步提高因子对模型的解释能力,在混频模型设定适当的条件下,由扰动项构建得到的高阶矩矩阵应具有明显的稀疏性特征,利用这一特征识别最优因子个数,从而进一步降低高阶矩矩阵的估计误差。研究价值:通过使用混频模型,在提高对模型解释能力的同时,构建一种相对于传统信息准则方法更能准确识别包含高阶矩信息的最优因子个数估计方法。

关 键 词:混频模型  高阶矩  最优因子个数  因子模型

Determining the Number of Factors of Higher-Order Co-moments Based on MIDAS Model
Yang Dong,Kang Jijun,Lu Wanbo. Determining the Number of Factors of Higher-Order Co-moments Based on MIDAS Model[J]. The Journal of Quantitative & Technical Economics, 2020, 37(1): 141-164
Authors:Yang Dong  Kang Jijun  Lu Wanbo
Affiliation:(School of Economics and Business Administration,Chongqing University;School of Statistics,Southwestern University of Finance and Economics)
Abstract:Research Objectives:In order to reduce the high estimation error of traditional naive estimation in the case of constructing high-order co-moments portfolio with skewness and kurtosis,this paper proposes a new method of determining the optimal number of factors when high-order co-moments are considered based on MIDAS model.Research Methods:In theory,the asymptotic properties of the statistic obtained by the new method are analyzed and tested by Monte Carlo simulation under finite sample conditions.Research Findings:The new method can more accurately identify the optimal number of factors including high-order moments,and has obvious advantages over the method based on information criterion method.Research Innovations:Based on the MIDAS method,the interpretation ability of factor model is further improved,and under the appropriate conditions by the MIDAS model,the high-order co-moments obtained by the error term should be sparse,which could be used to identify the optimal number of factors,thus further reducing the estimation error of the higher-order co-moments matrices.Research Value:By using the MIDAS model,while improving the interpretation ability of the model,a method of estimating the optimal number of factors containing high-order moment information is constructed and is proven more accurate than the traditional information criterion method.
Keywords:MIDAS Model  Higher-Order Co-moments  Number of Factors  Factor Model
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号