首页 | 本学科首页   官方微博 | 高级检索  
     


Spatio-temporal probabilistic forecasting of wind power for multiple farms: A copula-based hybrid model
Abstract:Accurate probabilistic forecasting of wind power output is critical to maximizing network integration of this clean energy source. There is a large literature on temporal modeling of wind power forecasting, but considerably less work combining spatial dependence into the forecasting framework. Through the careful consideration of the temporal modeling component, complemented by support vector regression of the temporal model residuals, this work demonstrates that a DVINE copula model most accurately represents the residual spatial dependence. Additionally, this work proposes a complete set of validation mechanisms for multi-h-step forecasts that, when considered together, comprehensively evaluate accuracy. The model and validation mechanisms are demonstrated in two case studies, totaling ten wind farms in the Texas electric grid. The proposed method outperforms baseline and competitive models, with an average Continuous Ranked Probability Score of less than 0.15 for individual farms, and an average Energy Score of less than 0.35 for multiple farms, over the 24-hour-ahead horizon. Results show the model’s ability to replicate the power output dynamics through calibrated and sharp predictive densities.
Keywords:Calibration  Sharpness  Skill scores  Support vector regression  Time series  Vine copula
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号