首页 | 本学科首页   官方微博 | 高级检索  
     


LoMEF: A framework to produce local explanations for global model time series forecasts
Abstract:Global forecasting models (GFMs) that are trained across a set of multiple time series have shown superior results in many forecasting competitions and real-world applications compared with univariate forecasting approaches. One aspect of the popularity of statistical forecasting models such as ETS and ARIMA is their relative simplicity and interpretability (in terms of relevant lags, trend, seasonality, and other attributes), while GFMs typically lack interpretability, especially relating to particular time series. This reduces the trust and confidence of stakeholders when making decisions based on the forecasts without being able to understand the predictions. To mitigate this problem, we propose a novel local model-agnostic interpretability approach to explain the forecasts from GFMs. We train simpler univariate surrogate models that are considered interpretable (e.g., ETS) on the predictions of the GFM on samples within a neighbourhood that we obtain through bootstrapping, or straightforwardly as the one-step-ahead global black-box model forecasts of the time series which needs to be explained. After, we evaluate the explanations for the forecasts of the global models in both qualitative and quantitative aspects such as accuracy, fidelity, stability, and comprehensibility, and are able to show the benefits of our approach.
Keywords:Local interpretability  Time series forecasting  Global models  Bootstrapping  Explainability
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号