首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian prior elicitation in DSGE models: Macro- vs micropriors
Authors:Marco J. Lombardi
Affiliation:a European Central Bank, Kaiserstrasse 29, 63660 Frankfurt am Main, Germany
b Banca d'Italia, Via Nazionale 91, 00184, Rome, Italy
Abstract:Bayesian approaches to the estimation of DSGE models are becoming increasingly popular. Prior knowledge is normally formalized either directly on deep parameters' values (‘microprior’) or indirectly, on macroeconomic indicators, e.g. moments of observable variables (‘macroprior’). We introduce a non-parametric macroprior which is elicited from impulse response functions and assess its performance in shaping posterior estimates. We find that using a macroprior can lead to substantially different posterior estimates. We probe into the details of our result, showing that model misspecification is likely to be responsible of that. In addition, we assess to what extent the use of macropriors is impaired by the need of calibrating some hyperparameters.
Keywords:DSGE models   Bayesian estimation   Prior distribution   Impulse response function
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号