首页 | 本学科首页   官方微博 | 高级检索  
     

利用频谱排序和筛选的突变噪声快速估计
引用本文:管海清,张徐垚. 利用频谱排序和筛选的突变噪声快速估计[J]. 国际商务研究, 2020, 0(11)
作者姓名:管海清  张徐垚
作者单位:中国西南电子技术研究所,成都 610036
摘    要:针对最小值控制递归平均(Minima Controlled Recursive Averaging,MCRA)算法不能快速跟踪突变噪声的问题,提出了一种基于频谱排序和筛选的突变噪声快速估计方法。该方法在MCRA算法的基础上对带噪语音的功率谱进行排序,筛选出不含语音信号的频点来估计噪声的平均功率谱;当检测到噪声突变时,对当前的平滑参数和状态变量进行校正。仿真结果表明,该方法可以将突变噪声的跟踪时间缩短90%以上;用于语音降噪处理时,音质可以提升约0.4分。该方法具有一定的工程应用价值。

关 键 词:语音降噪  突变噪声  噪声估计  频谱排序  频谱筛选

Fast Power Estimation of Mutational Noise by Using Spectrum Sorting and Screening
GUAN Haiqing,ZHANG Xuyao. Fast Power Estimation of Mutational Noise by Using Spectrum Sorting and Screening[J]. International Business Research, 2020, 0(11)
Authors:GUAN Haiqing  ZHANG Xuyao
Affiliation:Southwest China Institute of Electronic Technology,Chengdu 610036,China
Abstract:The noise estimation algorithm of minima controlled recursive averaging(MCRA) cannot rapidly track the mutational noise.To address the problem,a fast power estimation algorithm of mutational noise based on spectrum sorting and screening is proposed.Based on the MCRA algorithm,this method sorts the power spectrum of the noisy speech and screens the frequency points without speech to estimate the average noise power spectrum of the entire frequency band.The current smoothing parameters and status variables are corrected when mutational noise is detected.The simulation results show that the tracking time of mutational noise is shortened by more than ninety percent,and the mean opinion score of de-noised speech has increased by about 0.4.Meanwhile,this method is valuable in practical projects.
Keywords:speech de-noising  mutational noise  noise estimation  spectrum sorting  spectrum screening
点击此处可从《国际商务研究》浏览原始摘要信息
点击此处可从《国际商务研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号