首页 | 本学科首页   官方微博 | 高级检索  
     


Estimating the conditional mode of a stationary stochastic process from noisy observations
Authors:D. A. Ioannides
Affiliation:(1) Department of Economics, University of Macedonia, 156, Egnatia str., P.O. Box 1591, GR-54006 Thessaloniki, Greece (e-mail: dimioan@uom.gr), GR
Abstract:Let {(X i, Y i,)}, i≥1, be a strictly stationary process from noisy observations. We examine the effect of the noise in the response Y and the covariates X on the nonparametric estimation of the conditional mode function. To estimate this function we are using deconvoluting kernel estimators. The asymptotic behavior of these estimators depends on the smoothness of the noise distribution, which is classified as either ordinary smooth or super smooth. Uniform convergence with almost sure convergence rates is established for strongly mixing stochastic processes, when the noise distribution is ordinary smooth. Received: April 1998
Keywords:: Deconvolution  nonparametric estimation  α  -mixing  noisy observations  conditional density and mode  exponential inequality  uniform convergence
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号