Forecasting stock market returns over multiple time horizons |
| |
Authors: | Dimitri Kroujiline Maxim Gusev Dmitry Ushanov Sergey V. Sharov Boris Govorkov |
| |
Affiliation: | 1. LGT Capital Partners, Pf?ffikon, Switzerlanddimitri.kroujiline@lgt.com;3. IBC Quantitative Strategies, T?rnaby, Sweden;4. Department of Mechanics and Mathematics, Moscow State University, Moscow, Russia;5. Advanced School of General &6. Applied Physics, Lobachevsky State University, N. Novgorod, Russia |
| |
Abstract: | In this paper, we seek to demonstrate the predictability of stock market returns and explain the nature of this return predictability. To this end, we introduce investors with different investment horizons into the news-driven, analytic, agent-based market model developed in Gusev et al. [Algo. Finance, 2015, 4, 5–51]. This heterogeneous framework enables us to capture dynamics at multiple timescales, expanding the model’s applications and improving precision. We study the heterogeneous model theoretically and empirically to highlight essential mechanisms underlying certain market behaviours, such as transitions between bull and bear markets and the self-similar behaviour of price changes. Most importantly, we apply this model to show that the stock market is nearly efficient on intraday timescales, adjusting quickly to incoming news, but becomes inefficient on longer timescales, where news may have a long-lasting nonlinear impact on dynamics, attributable to a feedback mechanism acting over these horizons. Then, using the model, we design algorithmic strategies that utilize news flow, quantified and measured, as the only input to trade on market return forecasts over multiple horizons, from days to months. The backtested results suggest that the return is predictable to the extent that successful trading strategies can be constructed to harness this predictability. |
| |
Keywords: | Stock market dynamics Return predictability Price feedback Market efficiency News analytics Sentiment evolution Agent-based models Ising Dynamical systems Synchronization Self-similar behaviour Regime transitions News-based strategies Algorithmic trading |
|
|