首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
STEM-oriented engineering design practice has become recognized increasingly by technology education professionals in Taiwan. This study sought to examine the effectiveness of the application of an integrative STEM approach within engineering design practices in high school technology education in Taiwan. A quasi-experimental study was conducted to investigate the respective learning performance of students studying a STEM engineering module compared to students studying the technology education module. The student performances for conceptual knowledge, higher-order thinking skills and engineering design project were assessed. The data were analyzed using quantitative (t test, ANOVA, ANCOVA, correlation analysis) approaches. The findings showed that the participants in the STEM engineering module outperformed significantly the participants studying the technology education module in the areas of conceptual knowledge, higher-order thinking skills, and the design project activity. A further analysis showed that the key differences in the application of design practice between the two groups were (a) their respective problem prediction and (b) their analysis capabilities. The results supported the positive effect of the use of an integrative STEM approach in high school technology education in Taiwan.  相似文献   

2.
Many scholars claimed the integration of science, technology, engineering and mathematics (STEM) education is beneficial to the national economy and teachers and institutes have been working to develop integrated education programs. This study examined a project-based learning (PjBL) activity that integrated STEM using survey and interview methods. The participants were 30 freshmen with engineering related backgrounds from five institutes of technology in Taiwan. Questionnaires and semi-structured interviews were used to examine student attitudes towards STEM before and after the PjBL activity. The results of the survey showed that students’ attitudes to the subject of engineering changed significantly. Most of the students recognized the importance of STEM in the science and engineering disciplines; they mentioned in interview that the possession of professional science knowledge is useful to their future career and that technology may improve our lives and society, making the world a more convenient and efficient place. In conclusion, combining PjBL with STEM can increase effectiveness, generate meaningful learning and influence student attitudes in future career pursuit. Students are positive towards combining PjBL with STEM.  相似文献   

3.
Integrating engineering and technology concepts into K-12 science and math curricula through engineering design project-based learning has been found to increase students’ interest in science, technology, engineering, and mathematics (STEM), however preparing teachers to shift to interdisciplinary teaching remains a significant challenge. Primarily teachers need to develop both skills and attitudes toward interdisciplinary teaching. In doing so, professional development (PD) is considered a key component in helping teachers through this transformation process. In an educational environment of accountability, measuring the effects of PD programs on teacher behaviors and capacity is essential but often elusive. The current study describes the change in attitudes to interdisciplinary teaching of 29 self-selected middle and high school teachers who participated a PD workshop and in delivering a 12–15 week interdisciplinary teaching and design problem unit that spanned multiple STEM subjects. This quasi-experimental pilot study implemented a single group pretest–posttest design using survey methods to collect data from the participants at two intervals; at the time of the PD workshop and at the completion of the teaching unit that emphasized a long-term engineering design problem. The goals of this research are to (1) assess the changes in attitudes to interdisciplinary teaching, attitudes to teamwork, teaching satisfaction, and resistance to change, (2) explore relationships among these changes, (3) and describe the variation in these changes across teachers’ gender, school level, discipline taught, and education level.  相似文献   

4.
The growth of STEM career occupations is outpacing the college enrollment of STEM students in the United States. There have been many research projects investigating this issue. There has not however been a study which investigated the impact non-fiction literature has on student interest in studying STEM (specifically engineering) content. The purpose of this study was to investigate the change of student attitudes toward engineering after reading literature involving non-fiction engineering centric narratives. The study used a modified version of the PATT (Pupils Attitudes Towards Technology) called the TEAS (Technology and Engineering Attitudes Scale) to measure student attitude change. The students were high-school aged students in the United States (ages: 15–17) who were enrolled in an English Literature course. The students completed the TEAS before and after reading and studying two engineering and technology centric non-fiction books (The Boy Who Harnessed The Wind and October Sky). The data revealed that student attitude after reading and studying the two books did not statistically change.  相似文献   

5.
Collaborative problem-solving skills are one of the key competencies required in the twenty-first century. In this study, researchers attempted to compare the effectiveness of web-based collaborative problem-solving systems (wCPSS) and classroom-based collaborative hands-on learning activities (cCHLA) in the development of collaborative problem-solving skills in junior high school students who were learning science, technology, engineering, and mathematics (STEM)-related subjects. A quasi-experimental, nonequivalent pretest–posttest control group design was employed, and 241 junior high school students were invited to participate in the study. According to the results, a wCPSS-supported environment with teacher guidance was found to be more effective than either a wCPSS-supported environment without teacher guidance or a cCHLA-facilitated environment in developing students’ collaborative problem-solving skills in STEM fields. The study suggested that a web-based collaborative problem-solving system with teacher guidance can be used in developing junior high students’ collaborative problem-solving skills in STEM education.  相似文献   

6.
This study was designed to explore the effects of problem-based learning (PBL) strategies on the attitudes of female senior high school students toward integrated knowledge learning in science, technology, engineering, and mathematics (STEM). Content analysis and focus group methods were adopted as the research processes. Data and information about the STEM internet platform, an attitude scale and the contents of interviews were also collected for analysis. The subjects were 10th grade students at a girls’ senior high school who volunteered to organize teams for a Solar Electric Trolley Contest. A total of 40 students were grouped into 18 teams. The results of the study indicate: (1) that PBL strategies can be helpful in enhancing students’ attitudes toward STEM learning and the exploration of future career choices; (2) that the PBL teaching strategy helped to lead students step by step toward completing the contest’s mission and to experience the meaning of integrated STEM knowledge; (3) that not only that students can actively apply engineering and science knowledge, but also that students tend to gain more solid science and mathematics knowledge through STEM learning in PBL; and (4) that PBL can enhance students’ abilities and provide them experiences related to knowledge integration and application. Therefore, it is recommended that the curriculum at the girls’ senior high school include more content related to specialty subjects to enhance their technological capabilities. In addition, a learning mechanism should be offered to aid advisers or teachers in strengthening students’ integrated and systematic knowledge about STEM.  相似文献   

7.
The purpose of the study was to explore a learning behavioral model of project-based learning (PBL) for senior high school students in the context of STEM (science, technology, engineering, and mathematics). Using “audio speakers” as the project theme, a series of tasks were designed to be solved using STEM knowledge via an online platform and student group discussions. A total of 84 volunteer students from a senior high school and a vocational school in Pingtung, Taiwan, were divided into 21 groups. Text analysis and questionnaire survey were administered. Data sources were the participants’ information collected via the STEM online platform and the questionnaire survey regarding STEM in PBL. The findings of the study are as follows: (1) the learning behavioral model for STEM in PBL showed a positive influence on students’ behavior in the form of cognition and behavioral intentions. In addition, cognition and behavioral intentions were positively influenced by attitude. The overall model fit was positive and could effectively explain senior high school and vocational school students’ learning behavior as related to STEM in PBL; (2) according to the results of the analysis of STEM from the online platform, students displayed a positive attitude, attained integrated conceptual and procedural knowledge, and demonstrated active behavioral intentions through STEM in PBL. In addition, the students’ creative and organized project outcomes revealed the effects of their behavior.  相似文献   

8.
This study presents the case of development and evaluation of a STEM-oriented 30-h robotics course for junior high school students (n = 32). Class activities were designed according to the P3 Task Taxonomy, which included: (1) practice—basic closed-ended tasks and exercises; (2) problem solving—small-scale open-ended assignments in which the learner can choose the solution method or arrive at different answers; and (3) project-based learning—open-ended challenging tasks. The research aimed at exploring students’ working patterns, achievements in learning the course, and the impact of this experience on students’ motivation to learn STEM subjects. Evaluation tools included a final exam on factual, procedural and conceptual knowledge in the STEM subject learned in the course, class observations, interviews with the students, and administrating an attitude questionnaire before and after the course. Since the experimental class was quite heterogenic in regard to students’ prior learning achievements and motivation to learn, some of the students completed just the basic exercises, others coped well with the problem-solving tasks, and only a few took it upon themselves to carry out a complex project. However, all students showed high motivation to learn robotics and STEM subjects. In summary, robotics provides a very rich and attractive learning environment for STEM education. Yet, the realization of this potential depends largely on careful design of the course methodology and especially the students’ assignments in the class. One should recognize that often only some students are capable of learning a new subject on their own through project work, and these students also need to gain additional knowledge and skills before dealing with complex projects.  相似文献   

9.
Cultivating students’ design abilities can be highly beneficial for the learning of science, technology, engineering, and mathematics (STEM) concepts, and development of higher-order thinking capabilities (National Academy of Engineering and National Research Council in STEM integration in k-12 education: status, prospects, and an agenda for research, The National Academies Press, Washington, 2014). Therefore, examining students’ strategies, how they distribute their cognitive effort, and confront STEM concepts during design experiences, can help educators identify effective and developmentally appropriate methods for teaching and scaffolding design activities for students (National Research Council in standards for k-12 engineering education? The National Academies Press, Washington, 2010). Yet, educational researchers have only recently begun examining students’ engineering design cognition at the P-12 level, despite reports such as Standards for K-12 Engineering Education? (National Research Council 2010) designating this area of research as lackluster. Of the recent studies that have investigated engineering design cognition at the P-12 level, the primary method of investigation has been verbal protocol analysis using a think-aloud method (Grubbs in further characterization of high school pre- and non-engineering students’ cognitive activity during engineering design, 2016). This methodology captures participants’ verbalization of their thought process as they solve a design challenge. Analysis is typically conducted by applying a pre-determined coding scheme, or one that emerges, to determine the distribution of a group’s or an individual’s cognition. Consequently, researchers have employed a variety of coding schemes to examine and describe students’ design cognition. Given the steady increase of explorations into connections between P-12 engineering design cognition and development of student cognitive competencies, it becomes increasingly important to understand and choose the most appropriate coding schemes available, as each has its own intent and characteristics. Therefore, this article presents an examination of recent P-12 design cognition coding schemes with the purpose of providing a background for selecting and applying a scheme for a specific outcome, which can better enable the synthesis and comparison of findings across studies. Ultimately, the aim is to aid others in choosing an appropriate coding scheme, with cognizance of research analysis intent and characteristics of research design, while improving the intentional scaffolding and support of design challenges.  相似文献   

10.
Relatively low participation in the hard sciences (mathematics, science, engineering and technology) has become a concern with respect to the capacity of Australia to meet critical infrastructure projects. This problem has its roots in poor student attitudes towards and perceptions about the study of prerequisite subjects including mathematics and science. Perception formation commences early in students’ education where students have claimed that mathematics was not intrinsically useful and was difficult to understand. With this mind, an intervention was planned and implemented in which technology and design practice was used to integrate the study of mathematics so students could produce and explain a useful artefact. The integrated design project included a focus upon instructional and regulatory discourse. Useful integration tools were developed that facilitated positive cognitive discourses such that students demonstrated a functional understanding of mathematical concepts, reported a broader and more applied understanding of the nature of mathematics and a belief that integration had helped them to make more sense of mathematics.  相似文献   

11.
Teachers’ knowledge of STEM education, their understanding, and pedagogical application of that knowledge is intrinsically linked to the subsequent effectiveness of STEM delivery within their own practice; where a teacher’s knowledge and understanding is deficient, the potential for pupil learning is ineffective and limited. Set within the context of secondary age phase education in England and Wales (11–16 years old), this paper explores how teachers working within the field of design and technology education acquire new knowledge in STEM; how understanding is developed and subsequently embedded within their practice to support the creation of a diverse STEM-literate society. The purpose being to determine mechanisms by which knowledge acquisition occurs, to reconnoitre potential implications for education and learning at work, including consideration of the role which new technologies play in the development of STEM knowledge within and across contributory STEM subject disciplines. Underpinned by an interpretivist ontology, work presented here builds upon the premise that design and technology is an interdisciplinary educational construct and not viewed as being of equal status to other STEM disciplines including maths and science. Drawing upon the philosophical field of symbolic interactionism and constructivist grounded theory, work embraces an abductive methodology where participants are encouraged to relate design and technology within the context of STEM education. Emergent findings are discussed in relation to their potential to support teachers’ educational development for the advancement of STEM literacy, and help secure design and technology’s place as a subject of value within a twenty-first Century curriculum.  相似文献   

12.
Engineering design practice has been recognized as an effective approach to engage students in STEM learning. However, we noticed that students who possessed strong STEM knowledge did not necessarily perform well on their design projects. Thus, this study sought to explore factors that shaped students’ design objectives and means. A design-based research was adopted using a single group teaching experiment, in which students’ performance in relation to conceptual knowledge, engineering design practice, and their STEM attitudes were assessed in different design complexity groups. Based on the findings of this study, we concluded that students’ interest and metacognitive skills might be the key factors affecting their motivation during the engineering design process. Their abilities in predictive analysis and testing/revising were core elements affecting their design thinking. Our work provides preliminary evidence on how students form and present different design purposes and objectives in an engineering design project.  相似文献   

13.
This paper examines recent research in student learning of technological concepts and processes. To explore this area three inter-related aspects are considered; existing concepts of technology, technological knowledge and processes. Different views of technology and technology education are reflected in both research outcomes and curriculum documents. Teacher and student perceptions of technology impact on the way in which technology is undertaken in the classroom. Teacher's perceptions of technology influence what they perceive as being important in learning of technology. student's perceptions of technology and technology education influence what knowledge and skills they operationalise in a technological task and hence affect student technological capability. Technological concepts and processes are often defined in different ways by particular groups. Subject subcultures are strongly held by both teachers and students. The influence of subject subcultures and communities of practice will be discussed in terms of defining and operationalising technological concepts and processes. Technological concepts are not consistently defined in the literature. For students to undertake technological activities, knowledge and processes cannot be divorced. Recent research highlights the problems when processes are emphasised over knowledge. This paper will examine different technological concepts in an attempt to create a critical balance between knowledge and process. Much of the literature in technology education has rightly emphasised definitions, curriculum issues, implementation and teacher training. This paper argues that it is now time to place a great emphasis on in-depth research on student understanding of technological concepts and processes and ways in which these can be enhanced.  相似文献   

14.
The purpose of this study was to investigate the effects of online (web-based) creative problem-solving (CPS) activities on student technological creativity and to examine the characteristics of student creativity in the context of online CPS. A pretest–posttest quasi-experiment was conducted with 107 fourth-grade students in Taiwan. The quantitative analysis revealed that the technological creativity of the online-CPS students was better than that of the traditional group. It was evident that students in the online-CPS groups were better at analytic than at synthetic thinking. Metaphor and analogy were used to produce new ideas most frequently. In addition to generating ideas by themselves, students arrived at solutions by refining and adapting others’ thoughts with little discussion or interaction on the web. Consideration of the feasibility of production was the most important factor in the technological creativity of students.  相似文献   

15.
This paper, based in Northern Ireland, is a case study of an innovative programme which places year 3 B.Ed. post-primary student teachers of Technology and Design into industry for a five-day period. The industrial placement programme is set in an international context of evolving pre-service field placements and in a local context defined by the Northern Ireland Curriculum (CCEA 2007); a rationale for the inclusion of Technology and Design within that curriculum; and the promotion of a STEM (Science, Technology, Engineering and Mathematics) agenda. Undertaken in collaboration with a range of industrial partners, the placements aim to give the student teachers an opportunity to spend time in industry. All the students concerned started their teacher education degree straight from school and therefore are without industrial experience. As a result of the placements the students gained valuable industrial experience and thereby further enhanced their working knowledge and understanding in their main subject area of Technology and Design, in particular, and other curricular areas, in general. The students report many benefits, both personally and professionally, to be gained from the placements typically the opportunity to see a range of industrial processes, many of which they are required to teach, and to gain a better understanding of the link between content of Technology and Design education and the activities of industry. This case study is based on feedback from the 2010 to 2011 cohort of students whose comments confirm the inherent value of exposing student teachers to industrial environments.  相似文献   

16.
Assessments of new pedagogical practices usually rely on instructor oriented surveys and questionnaires to measure student perceptions of teaching methods; however, fixed response categories in structured questionnaires might bias results. This paper demonstrates a mixed methods approach using open and multi-dimensional scaling (MDS) for a student-oriented exploratory analysis and visualization of perceptions of teaching methods. A scientific writing and research methodology course is a required course for first year PhD students in software engineering and geo-infomatics at Wuhan University, China. PhD students attending this course came from countries whose first language is not English, and from a variety of software engineering and geo-infomatics domains. The problem therefore, was to elicit un-mediated perceptions of course assignment, reduce and generalize the resulting data for interpretation. A graphical visualization of themes emerging in student responses to two open-ended questions about an assignment provided a basis for inferring student interests and needs. In this course, an assessment of a task oriented problem-solving experience was implemented through a mixed method strategy incorporating qualitative methods, exploratory data mining techniques, and cartographic visualization. The visualization shows that participating students generally perceived the exercise as challenging, helped them understand journal requirements, and develop ways to survey texts to extract information. The results also suggested that this consensus breaks down in terms of each participant’s own goals, domain, and research interests. Unstructured questions, open coding, and MDS visualization might also prove to be helpful in the process of devising and assessing other student centered pedagogies.  相似文献   

17.
Since technology education is, compared to subjects such as mathematics and science, still a fairly new subject both nationally and internationally, it does not have an established subject philosophy. In the absence of an established subject philosophy for technology education, one can draw on other disciplines in the field, such as engineering and design practice, for insights into technological knowledge. The purpose of this study is to investigate the usefulness of an epistemological conceptual framework chiefly derived from engineering, to be able to describe the nature of technological knowledge, in an attempt to contribute towards the understanding of this relatively new learning area. The conceptual framework was derived mainly from Vincenti’s (What engineers know and how they know it. Johns Hopkins University Press, Baltimore, 1990) categories of knowledge based on his research into historical aeronautic engineering cases. Quantitative research was used to provide insight into the categories of knowledge used by students at the University of Pretoria during capability tasks and included an analysis of a questionnaire administered to these students. Findings suggest that the conceptual framework used here is useful in technology education and that the categories of technological knowledge apply to all the content areas, i.e. structures, systems and control, and processing, in technology education. The study recommends that researchers and educators deepen their understanding of the nature of technological knowledge by considering the categories of technological knowledge presented in the conceptual framework.  相似文献   

18.
This paper reports a study of innovative and traditional engineering programmes at the University of Salford, UK Attention is given to student entry, and to course evaluation and improvement. Using the Myers-Brigg Type Inventory (MBTI) and the Technical Students' Learning Environment Preferences questionnaire (TSLEP), data were obtained about personality type and student developmental level. In addition, a selected group of the students were interviewed to measure their cognitive levels as defined by Perry's model of intellectual and ethical development, and to assist in the validation of the TSLEP questionnaire. Application of the TSLEP and the MBTI instruments to engineering students at North Carolina State University and the State University of New York at Brighamton generated further data which are used to make US/UK comparisons and to suggest ways in which the scope of engineering education might be expanded to meet the needs of an increasingly diverse student body.  相似文献   

19.

Using visualized bibliographic data and a range of quantitative research methods, the analysis of the International Journal of Technology and Design Education (IJTDE), which is included in the core collection of Social Science Citation Index, reached a number of conclusions. Firstly, IJTDE is an important platform for the exchange of research results in the field of technology education, and has a significant influence. Secondly, De Vries, Williams, Ankiewicz and a number of others are influential and prolific authors in the IJTDE. Authors from the USA, England, New Zealand, Taiwan and Australia make most contributions to the IJTDE, Delft University of Technology, University of Auckland and the University of Waikato are the more prolific institutions in the IJTDE. Thirdly, technology education, education, design, science, creativity, technology, design education, knowledge, student, technological literacy and problem solving are the most frequency keywords in the IJTDE. Creativity, design education, problem solving, curriculum development, design and critical thinking, practice, engineering education, and STEM education are research trends in the IJTDE between 2000 and 2018. Fourthly, the discipline knowledge base mainly focuses on teaching and design methods in the technological environment, and the definitions of technology-related concepts. The results enable a deeper understanding and consideration of the content and influence of IJTDE, and the research hotspots in the field of technology education.

  相似文献   

20.
As cultural, social, political and economic changes take place, the secondary or high school curriculum should reflect and respond to changing needs and aspirations of students. Technology Education has been proactive in this arena as it has transformed over the decades to meet ever-changing societal needs. The most recent change to the discipline has been to add engineering and, as a result, adopting a new name and curriculum-Engineering and Technology Education. The added component and name change in Technology Education is causing discussions about what the new direction means, what professional preparation changes will be incurred, and what work graduating students will be prepared to do. In light of these changes, this study investigated perceptions of high school students in the United States of America about engineering and technology courses they take. To investigate whether students’ perceptions are in accord with current changes in Engineering and Technology Education, 316 students enrolled in engineering and technology courses in Georgia schools that have an affiliation with the Georgia Engineering and Technology Education Association (GETEA) were surveyed. According to data analyses, students’ perceptions can be divided into two factors. Educational Value of Course (factor 1) was extracted from statements measuring the degree to which the courses prepare students for employment and provide them with information regarding future employment. Personal Relevance of Course (factor 2) was derived from statements measuring students’ perceptions about links between engineering and technology education and their personal lives. Such findings suggest these students valued their engineering and technology courses, planned to continue their education, made good grades, and had varied types of career expectations for jobs such as design engineers and architects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号