首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
This paper proposes a new approximation method for pricing barrier options with discrete monitoring under stochastic volatility environment. In particular, the integration-by-parts formula and the duality formula in Malliavin calculus are effectively applied in pricing barrier options with discrete monitoring. To the best of our knowledge, this paper is the first one that shows an analytical approximation for pricing discrete barrier options with stochastic volatility models. Furthermore, it provides numerical examples for pricing double barrier call options with discrete monitoring under Heston and λ-SABR models.  相似文献   

2.
We examine in this article the pricing of target volatility options in the lognormal fractional SABR model. A decomposition formula of Itô's calculus yields an approximation formula for the price of a target volatility option in small time by the technique of freezing the coefficient. A decomposition formula in terms of Malliavin derivatives is also provided. Alternatively, we also derive closed form expressions for a small volatility of volatility expansion of the price of a target volatility option. Numerical experiments show the accuracy of the approximations over a reasonably wide range of parameters.  相似文献   

3.
This paper proposes an asymptotic expansion scheme of currency options with a libor market model of interest rates and stochastic volatility models of spot exchange rates. In particular, we derive closed-form approximation formulas for the density functions of the underlying assets and for pricing currency options based on a third order asymptotic expansion scheme; we do not model a foreign exchange rate’s variance such as in Heston [(1993) The Review of Financial studies, 6, 327–343], but its volatility that follows a general time-inhomogeneous Markovian process. Further, the correlations among all the factors such as domestic and foreign interest rates, a spot foreign exchange rate and its volatility, are allowed. Finally, numerical examples are provided and the pricing formula are applied to the calibration of volatility surfaces in the JPY/USD option market.  相似文献   

4.

A new method to retrieve the risk-neutral probability measure from observed option prices is developed and a closed form pricing formula for European options is obtained by employing a modified Gram–Charlier series expansion, known as the Gauss–Hermite expansion. This expansion converges for fat-tailed distributions commonly encountered in the study of financial returns. The expansion coefficients can be calibrated from observed option prices and can also be computed, for example, in models with the probability density function or the characteristic function known in closed form. We investigate the properties of the new option pricing model by calibrating it to both real-world and simulated option prices and find that the resulting implied volatility curves provide an accurate approximation for a wide range of strike prices. Based on an extensive empirical study, we conclude that the new approximation method outperforms other methods both in-sample and out-of-sample.

  相似文献   

5.
This paper studies the approximation accuracy of a singular perturbation method for option pricing up to the second order under a stochastic volatility model. First, numerical experiments confirm that the first order approximation provides sufficiently accurate option prices in a fast mean-reversion volatility case. On the other hand, it creates relatively large errors in a non-fast mean-reversion volatility environment. Then, the second order approximation formula is derived and the improvement of the approximation is investigated.  相似文献   

6.
American options are actively traded worldwide on exchanges, thus making their accurate and efficient pricing an important problem. As most financial markets exhibit randomly varying volatility, in this paper we introduce an approximation of an American option price under stochastic volatility models. We achieve this by using the maturity randomization method known as Canadization. The volatility process is characterized by fast and slow-scale fluctuating factors. In particular, we study the case of an American put with a single underlying asset and use perturbative expansion techniques to approximate its price as well as the optimal exercise boundary up to the first order. We then use the approximate optimal exercise boundary formula to price an American put via Monte Carlo. We also develop efficient control variates for our simulation method using martingales resulting from the approximate price formula. A numerical study is conducted to demonstrate that the proposed method performs better than the least squares regression method popular in the financial industry, in typical settings where values of the scaling parameters are small. Further, it is empirically observed that in the regimes where the scaling parameter value is equal to unity, fast and slow-scale approximations are equally accurate.  相似文献   

7.
We derive efficient and accurate analytic approximation formulas for pricing options on discrete realized variance (DRV) under affine stochastic volatility models with jumps using the partially exact and bounded (PEB) approximations. The PEB method is an enhanced extension of the conditioning variable approach commonly used in deriving analytic approximation formulas for pricing discrete Asian style options. By adopting either the conditional normal or gamma distribution approximation based on some asymptotic behaviour of the DRV of the underlying asset price process, we manage to obtain PEB approximation formulas that achieve a high level of numerical accuracy in option values even for short-maturity options on DRV.  相似文献   

8.
This article presents the theory of option pricing with random volatilities in complete markets. As such, it makes two contributions. First, the newly developed martingale measure technique is used to synthesize results dating from Merton (1973) through Eisenberg, (1985, 1987). This synthesis illustrates how Merton's formula, the CEV formula, and the Black-Scholes formula are special cases of the random volatility model derived herein. The impossibility of obtaining a self-financing trading strategy to duplicate an option in incomplete markets is demonstrated. This omission is important because option pricing models are often used for risk management, which requires the construction of synthetic options.Second, we derive a new formula, which is easy to interpret and easy to program, for pricing options given a random volatility. This formula (for a European call option) is seen to be a weighted average of Black-Scholes values, and is consistent with recent empirical studies finding evidence of mean-reversion in volatilities.Helpful comments from an anonymous referee are greatly appreciated.  相似文献   

9.
We propose a new accurate method for pricing European spread options by extending the lower bound approximation of Bjerksund and Stensland (2011) beyond the classical Black–Scholes framework. This is possible via a procedure requiring a univariate Fourier inversion. In addition, we are also able to obtain a new tight upper bound. Our method provides also an exact closed form solution via Fourier inversion of the exchange option price, generalizing the Margrabe (1978) formula. The method is applicable to models in which the joint characteristic function of the underlying assets forming the spread is known analytically. We test the performance of these new pricing algorithms performing numerical experiments on different stochastic dynamic models.  相似文献   

10.
In this paper, we propose a new measure of Greek equity market volatility based on the prices of FTSE/ATHEX-20 index options. Greek Implied Volatility Index is calculated using the model-free methodology that involves option prices summations and is independent from the Black and Scholes pricing formula. The specific method is applied for the first time in a peripheral and illiquid market as the Athens Exchange.The empirical findings of this paper show that the proposed volatility index includes information about future realized volatility beyond that contained in past volatility. In addition, our analysis indicates that there is a statistically significant negative and asymmetric contemporaneous relationship between the returns of the implied volatility index and the underlying equity index. Finally, the volatility transmission effects on the Greek stock exchange from two leading markets, namely the New York Stock Exchange and the Deutsche Börse, are tested and documented.  相似文献   

11.
This paper provides a new option pricing model which justifies the standard industry implementation of the Black-Scholes model. The standard industry implementation of the Black-Scholes model uses an implicit volatility, and it hedges both delta and gamma risk. This industry implementation is inconsistent with the theory underlying the derivation of the Black-Scholes model. We justify this implementation by showing that these adhoc adjustments to the Black-Scholes model provide a reasonable approximation to valuation and delta hedging in our new option pricing model.  相似文献   

12.
Compound options are not only sensitive to future movements of the underlying asset price, but also to future changes in volatility levels. Because the Black–Scholes analytical valuation formula for compound options is not able to incorporate the sensitivity to volatility, the aim of this paper is to develop a numerical pricing procedure for this type of option in stochastic volatility models, specifically focusing on the model of Heston. For this, the compound option value is represented as the difference of its exercise probabilities, which depend on three random variables through a complex functional form. Then the joint distribution of these random variables is uniquely determined by their characteristic function and therefore the probabilities can each be expressed as a multiple inverse Fourier transform. Solving the inverse Fourier transform with respect to volatility, we can reduce the pricing problem from three to two dimensions. This reduced dimensionality simplifies the application of the fast Fourier transform (FFT) method developed by Dempster and Hong when transferred to our stochastic volatility framework. After combining their approach with a new extension of the fractional FFT technique for option pricing to the two-dimensional case, it is possible to obtain good approximations to the exercise probabilities. The resulting upper and lower bounds are then compared with other numerical methods such as Monte Carlo simulations and show promising results.  相似文献   

13.
This paper investigates option prices in an incomplete stochastic volatility model with correlation. In a general setting, we prove an ordering result which says that prices for European options with convex payoffs are decreasing in the market price of volatility risk.As an example, and as our main motivation, we investigate option pricing under the class of q-optimal pricing measures. The q-optimal pricing measure is related to the marginal utility indifference price of an agent with constant relative risk aversion. Using the ordering result, we prove comparison theorems between option prices under the minimal martingale, minimal entropy and variance-optimal pricing measures. If the Sharpe ratio is deterministic, the comparison collapses to the well known result that option prices computed under these three pricing measures are the same.As a concrete example, we specialize to a variant of the Hull-White or Heston model for which the Sharpe ratio is increasing in volatility. For this example we are able to deduce option prices are decreasing in the parameter q. Numerical solution of the pricing pde corroborates the theory and shows the magnitude of the differences in option price due to varying q.JEL Classification: D52, G13  相似文献   

14.
In this paper we propose two efficient techniques which allow one to compute the price of American basket options. In particular, we consider a basket of assets that follow a multi-dimensional Black–Scholes dynamics. The proposed techniques, called GPR Tree (GRP-Tree) and GPR Exact Integration (GPR-EI), are both based on Machine Learning, exploited together with binomial trees or with a closed form formula for integration. Moreover, these two methods solve the backward dynamic programing problem considering a Bermudan approximation of the American option. On the exercise dates, the value of the option is first computed as the maximum between the exercise value and the continuation value and then approximated by means of Gaussian Process Regression. The two methods mainly differ in the approach used to compute the continuation value: a single step of the binomial tree or integration according to the probability density of the process. Numerical results show that these two methods are accurate and reliable in handling American options on very large baskets of assets. Moreover we also consider the rough Bergomi model, which provides stochastic volatility with memory. Despite that this model is only bidimensional, the whole history of the process impacts on the price, and how to handle all this information is not obvious at all. To this aim, we present how to adapt the GPR-Tree and GPR-EI methods and we focus on pricing American options in this non-Markovian framework.  相似文献   

15.
By fractional integration of a square root volatility process, we propose in this paper a long memory extension of the Heston (Rev Financ Stud 6:327–343, 1993) option pricing model. Long memory in the volatility process allows us to explain some option pricing puzzles as steep volatility smiles in long term options and co-movements between implied and realized volatility. Moreover, we take advantage of the analytical tractability of affine diffusion models to clearly disentangle long term components and short term variations in the term structure of volatility smiles. In addition, we provide a recursive algorithm of discretization of fractional integrals in order to be able to implement a method of moments based estimation procedure from the high frequency observation of realized volatilities.  相似文献   

16.
Substantial progress has been made in developing more realistic option pricing models. Empirically, however, it is not known whether and by how much each generalization improves option pricing and hedging. We fill this gap by first deriving an option model that allows volatility, interest rates and jumps to be stochastic. Using S&P 500 options, we examine several alternative models from three perspectives: (1) internal consistency of implied parameters/volatility with relevant time-series data, (2) out-of-sample pricing, and (3) hedging. Overall, incorporating stochastic volatility and jumps is important for pricing and internal consistency. But for hedging, modeling stochastic volatility alone yields the best performance.  相似文献   

17.
Options markets, self-fulfilling prophecies, and implied volatilities   总被引:1,自引:0,他引:1  
This paper answers the following often asked question in option pricing theory: if the underlying asset's price does not satisfy a lognormal distribution, can market prices satisfy the Black-Scholes formula just because market participants believe it should? In complete markets, if the underlying asset's objective distribution is not lognormal, then the answer is no. But, in an incomplete market, if the underlying asset's objective distribution is not lognormal and all traders believe it is, then the answer is yes! The Black-Scholes formula can be a self-fulfilling prophecy. The proof of this second assertion consists of generating an economy where self-confirming beliefs sustain the Black-Scholes formula as an equilibrium. An asymmetric information model is provided, where the underlying asset's price has stochastic volatility and drift. This model is distinct from the existing pricing models in the literature, and it provides new empirical implications concerning Black-Scholes implied volatilities and the bid/ask spread. Similar to stochastic volatility models, this model is consistent with the implied volatility “smile” pattern in strike prices. In addition, it is consistent with implied volatilities being biased predictors of future volatilities.  相似文献   

18.
This paper develops a new approach to obtain the price and risk sensitivities of basket options which have a volatility smile. Using this approach, the Black–Scholes model and the Stochastic Volatility Inspired model have been used to obtain an approximate analytical pricing formula for basket options with a volatility smile. It is found that our approximate formula is quite accurate by comparing it with Monte Carlo simulations. It is also proved the option value of our approach is consistent with the option value generated by Levy’s and Gentle’s approaches for typical ranges of volatility. Further, we give a theoretical proof that the option values from Levy’s and Gentle’s works are the upper bound and the lower bound, respectively, for our option value. The calibration procedure and a practical example are provided. The main advantage of our approach is that it provides accurate and easily implemented basket option prices with volatility smile and hedge parameters and avoids the need to use time-consuming numerical procedures such as Monte Carlo simulation.  相似文献   

19.
Financial models with stochastic volatility or jumps play a critical role as alternative option pricing models for the classical Black–Scholes model, which have the ability to fit different market volatility structures. Recently, machine learning models have elicited considerable attention from researchers because of their improved prediction accuracy in pricing financial derivatives. We propose a generative Bayesian learning model that incorporates a prior reflecting a risk-neutral pricing structure to provide fair prices for the deep ITM and the deep OTM options that are rarely traded. We conduct a comprehensive empirical study to compare classical financial option models with machine learning models in terms of model estimation and prediction using S&P 100 American put options from 2003 to 2012. Results indicate that machine learning models demonstrate better prediction performance than the classical financial option models. Especially, we observe that the generative Bayesian neural network model demonstrates the best overall prediction performance.  相似文献   

20.
We present a faster, more accurate technique for estimating implied volatility using the standard partial derivatives of the Black‐Scholes option‐pricing formula. Beside Newton‐Raphson and slower approximation methods, this technique is the first to provide an error tolerance, which is essential for practical application. All existing noniterative approximation methods do not provide error tolerances and have the potential for large errors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号