首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study a class of optimization problems involving linked recursive preferences in a continuous‐time Brownian setting. Such links can arise when preferences depend directly on the level or volatility of wealth, in principal–agent (optimal compensation) problems with moral hazard, and when the impact of social influences on preferences is modeled via utility (and utility diffusion) externalities. We characterize the necessary first‐order conditions, which are also sufficient under additional conditions ensuring concavity. We also examine applications to optimal consumption and portfolio choice, and applications to Pareto optimal allocations.  相似文献   

2.
We study the problem of expected utility maximization in a large market, i.e., a market with countably many traded assets. Assuming that agents have von Neumann–Morgenstern preferences with stochastic utility function and that consumption occurs according to a stochastic clock, we obtain the “usual” conclusions of the utility maximization theory. We also give a characterization of the value function in a large market in terms of a sequence of value functions in finite‐dimensional models.  相似文献   

3.
We consider an optimal insurance design problem for an individual whose preferences are dictated by the rank‐dependent expected utility (RDEU) theory with a concave utility function and an inverse‐S shaped probability distortion function. This type of RDEU is known to describe human behavior better than the classical expected utility. By applying the technique of quantile formulation, we solve the problem explicitly. We show that the optimal contract not only insures large losses above a deductible but also insures small losses fully. This is consistent, for instance, with the demand for warranties. Finally, we compare our results, analytically and numerically, both to those in the expected utility framework and to cases in which the distortion function is convex or concave.  相似文献   

4.
The alpha‐maxmin model is a prominent example of preferences under Knightian uncertainty as it allows to distinguish ambiguity and ambiguity attitude. These preferences are dynamically inconsistent for nontrivial versions of alpha. In this paper, we derive a recursive, dynamically consistent version of the alpha‐maxmin model. In the continuous‐time limit, the resulting dynamic utility function can be represented as a convex mixture between worst and best case, but now at the local, infinitesimal level. We study the properties of the utility function and provide an Arrow–Pratt approximation of the static and dynamic certainty equivalent. We then derive a consumption‐based capital asset pricing formula and study the implications for derivative valuation under indifference pricing.  相似文献   

5.
This paper studies stability of the exponential utility maximization when there are small variations on agent's utility function. Two settings are considered. First, in a general semimartingale model where random endowments are present, a sequence of utilities defined on converges to the exponential utility. Under a uniform condition on their marginal utilities, convergence of value functions, optimal payoffs, and optimal investment strategies are obtained, their rate of convergence is also determined. Stability of utility‐based pricing is studied as an application. Second, a sequence of utilities defined on converges to the exponential utility after shifting and scaling. Their associated optimal strategies, after appropriate scaling, converge to the optimal strategy for the exponential hedging problem. This complements Theorem 3.2 in [Nutz, M. (2012): Risk aversion asymptotics for power utility maximization. Probab. Theory & Relat. Fields 152, 703–749], which establishes the convergence for a sequence of power utilities.  相似文献   

6.
We derive a formula for the minimal initial wealth needed to hedge an arbitrary contingent claim in a continuous-time model with proportional transaction costs; the expression obtained can be interpreted as the supremum of expected discounted values of the claim, over all (pairs of) probability measures under which the “wealth process” is a supermartingale. Next, we prove the existence of an optimal solution to the portfolio optimization problem of maximizing utility from terminal wealth in the same model, we also characterize this solution via a transformation to a hedging problem: the optimal portfolio is the one that hedges the inverse of marginal utility evaluated at the shadow state-price density solving the corresponding dual problem, if such exists. We can then use the optimal shadow state-price density for pricing contingent claims in this market. the mathematical tools are those of continuous-time martingales, convex analysis, functional analysis, and duality theory.  相似文献   

7.
This paper formulates a utility indifference pricing model for investors trading in a discrete time financial market under nondominated model uncertainty. Investor preferences are described by possibly random utility functions defined on the positive axis. We prove that when the investors's absolute risk aversion tends to infinity, the multiple‐priors utility indifference prices of a contingent claim converge to its multiple‐priors superreplication price. We also revisit the notion of certainty equivalent for multiple‐priors and establish its relation with risk aversion.  相似文献   

8.
We consider a consumption and investment problem where the market presents different regimes. An investor taking decisions continuously in time selects a consumption–investment policy to maximize his expected total discounted utility of consumption. The market coefficients and the investor's utility of consumption are dependent on the regime of the financial market, which is modeled by an observable finite-state continuous-time Markov chain. We obtain explicit optimal consumption and investment policies for specific HARA utility functions. We show that the optimal policy depends on the regime. We also make an economic analysis of the solutions, and show that for every investor the optimal proportion to allocate in the risky asset is greater in a "bull market" than in a "bear market." This behavior is not affected by the investor's risk preferences. On the other hand, the optimal consumption to wealth ratio depends not only on the regime, but also on the investor's risk tolerance: high risk-averse investors will consume relatively more in a "bull market" than in a "bear market," and the opposite is true for low risk-averse investors.  相似文献   

9.
Expected utility models in portfolio optimization are based on the assumption of complete knowledge of the distribution of random returns. In this paper, we relax this assumption to the knowledge of only the mean, covariance, and support information. No additional restrictions on the type of distribution such as normality is made. The investor’s utility is modeled as a piecewise‐linear concave function. We derive exact and approximate optimal trading strategies for a robust (maximin) expected utility model, where the investor maximizes his worst‐case expected utility over a set of ambiguous distributions. The optimal portfolios are identified using a tractable conic programming approach. Extensions of the model to capture asymmetry using partitioned statistics information and box‐type uncertainty in the mean and covariance matrix are provided. Using the optimized certainty equivalent framework, we provide connections of our results with robust or ambiguous convex risk measures, in which the investor minimizes his worst‐case risk under distributional ambiguity. New closed‐form results for the worst‐case optimized certainty equivalent risk measures and optimal portfolios are provided for two‐ and three‐piece utility functions. For more complicated utility functions, computational experiments indicate that such robust approaches can provide good trading strategies in financial markets.  相似文献   

10.
In this paper, we investigate the pricing via utility indifference of the right to sell a non‐traded asset. Consider an agent with power utility who owns a single unit of an indivisible, non‐traded asset, and who wishes to choose the optimum time to sell this asset. Suppose that this right to sell forms just part of the wealth of the agent, and that other wealth may be invested in a complete frictionless market. We formulate the problem as a mixed stochastic control/optimal stopping problem, which we then solve. We determine the optimal behavior of the agent, including the optimal criteria for the timing of the sale. It turns out that the optimal strategy is to sell the non‐traded asset the first time that its value exceeds a certain proportion of the agent's trading wealth. Further, it is possible to characterize this proportion as the solution to a transcendental equation.  相似文献   

11.
This paper introduces a dual problem to study a continuous‐time consumption and investment problem with incomplete markets and Epstein–Zin stochastic differential utilities. Duality between the primal and dual problems is established. Consequently, the optimal strategy of this consumption and investment problem is identified without assuming several technical conditions on market models, utility specifications, and agent's admissible strategies. Meanwhile, the minimizer of the dual problem is identified as the utility gradient of the primal value and is economically interpreted as the “least favorable” completion of the market.  相似文献   

12.
In a financial market with a continuous price process and proportional transaction costs, we investigate the problem of utility maximization of terminal wealth. We give sufficient conditions for the existence of a shadow price process, i.e., a least favorable frictionless market leading to the same optimal strategy and utility as in the original market under transaction costs. The crucial ingredients are the continuity of the price process and the hypothesis of “no unbounded profit with bounded risk.” A counterexample reveals that these hypotheses cannot be relaxed.  相似文献   

13.
The optimal dynamic allocation problem for a Bayesian investor is addressed when the stock's drift—modeled as a linear mean-reverting diffusion—is not observed directly but only via the measurement process. Adopting a martingale approach, an appropriate generalization of the Cameron–Martin (1945) formula then enables computation of both the optimal dynamic allocation and the value function for a general utility function, in terms of an inverse Laplace transform of an explicit expression. Moreover, closed-form formulas are provided in the case of power utility.  相似文献   

14.
We solve the problem of an investor who maximizes utility but faces random preferences. We propose a problem formulation based on expected certainty equivalents. We tackle the time-consistency issues arising from that formulation by applying the equilibrium theory approach. To this end, we provide the proper definitions and prove a rigorous verification theorem. We complete the calculations for the cases of power and exponential utility. For power utility, we illustrate in a numerical example that the equilibrium stock proportion is independent of wealth, but decreasing in time, which we also supplement by a theoretical discussion. For exponential utility, the usual constant absolute risk aversion is replaced by its expectation.  相似文献   

15.
OPTIMAL RISK SHARING FOR LAW INVARIANT MONETARY UTILITY FUNCTIONS   总被引:3,自引:0,他引:3  
We consider the problem of optimal risk sharing of some given total risk between two economic agents characterized by law-invariant monetary utility functions or equivalently, law-invariant risk measures. We first prove existence of an optimal risk sharing allocation which is in addition increasing in terms of the total risk. We next provide an explicit characterization in the case where both agents' utility functions are comonotone. The general form of the optimal contracts turns out to be given by a sum of options (stop-loss contracts, in the language of insurance) on the total risk. In order to show the robustness of this type of contracts to more general utility functions, we introduce a new notion of strict risk aversion conditionally on lower tail events, which is typically satisfied by the semi-deviation and the entropic risk measures. Then, in the context of an AV@R-agent facing an agent with strict monotone preferences and exhibiting strict risk aversion conditional on lower tail events, we prove that optimal contracts again are European options on the total risk.  相似文献   

16.
Hanqing  Jin  Zuo  Quan Xu  Xun  Yu Zhou 《Mathematical Finance》2008,18(1):171-183
A continuous-time financial portfolio selection model with expected utility maximization typically boils down to solving a (static) convex stochastic optimization problem in terms of the terminal wealth, with a budget constraint. In literature the latter is solved by assuming a priori that the problem is well-posed (i.e., the supremum value is finite) and a Lagrange multiplier exists (and as a consequence the optimal solution is attainable). In this paper it is first shown that, via various counter-examples, neither of these two assumptions needs to hold, and an optimal solution does not necessarily exist. These anomalies in turn have important interpretations in and impacts on the portfolio selection modeling and solutions. Relations among the non-existence of the Lagrange multiplier, the ill-posedness of the problem, and the non-attainability of an optimal solution are then investigated. Finally, explicit and easily verifiable conditions are derived which lead to finding the unique optimal solution.  相似文献   

17.
We give a general formulation of the utility maximization problem under nondominated model uncertainty in discrete time and show that an optimal portfolio exists for any utility function that is bounded from above. In the unbounded case, integrability conditions are needed as nonexistence may arise even if the value function is finite.  相似文献   

18.
For a relaxed investor—one whose relative risk aversion vanishes as wealth becomes large—the utility maximization problem may not have a solution in the classical sense of an optimal payoff represented by a random variable. This nonexistence puzzle was discovered by Kramkov and Schachermayer (1999) , who introduced the reasonable asymptotic elasticity condition to exclude such situations. Utility maximization becomes well posed again representing payoffs as measures on the sample space, including those allocations singular with respect to the physical probability. The expected utility of such allocations is understood as the maximal utility of its approximations with classical payoffs—the relaxed expected utility. This paper decomposes relaxed expected utility into its classical and singular parts, represents the singular part in integral form, and proves the existence of optimal solutions for the utility maximization problem, without conditions on the asymptotic elasticity. Key to this result is the Polish space structure assumed on the sample space.  相似文献   

19.
Using duality methods, we prove several key properties of the indifference price π for contingent claims. The underlying market model is very general and the mathematical formulation is based on a duality naturally induced by the problem. In particular, the indifference price π turns out to be a convex risk measure on the Orlicz space induced by the utility function.  相似文献   

20.
按照对效率与公平偏好的不同,初次分配效率与公平的政策组合有四种类型:"轻效率,轻公平"型;"轻效率,重公平"型;"重效率,轻公平"型;"重效率,重公平"型。不同社会发展阶段收入分配政策的制定实际上是对这四种政策组合的选择,以选择能带来最大化效用的分配制度。用分粥模型形象地对效率与公平的各种政策组合进行模拟,并根据收入分配效用函数对效率与公平政策组合的效用选择状况进行分析,结果表明,在初次分配"重效率"目标不变的前提下,消除收入分配不公平、减少贫富差距的关键在于同时建立初次分配"重公平"的机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号