首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
If the volatility is stochastic, stock price returns and European option prices depend on the time average of the variance, i.e. the integrated variance, not on the path of the volatility. Applying a Bayesian statistical approach, we compute a forward-looking estimate of this variance, an option-implied integrated variance. Simultaneously, we obtain estimates of the correlation coefficient between stock price and volatility shocks, and of the parameters of the volatility process. Due to the convexity of the Black–Scholes formula with respect to the volatility, pricing and hedging with Black–Scholes-type formulas and the implied volatility often lead to inaccuracies if the volatility is stochastic. Theoretically, this problem can be avoided by using Hull–White-type option pricing and hedging formulas and the integrated variance. We use the implied integrated variance and Hull–White-type formulas to hedge European options and certain volatility derivatives.  相似文献   

2.

A new method to retrieve the risk-neutral probability measure from observed option prices is developed and a closed form pricing formula for European options is obtained by employing a modified Gram–Charlier series expansion, known as the Gauss–Hermite expansion. This expansion converges for fat-tailed distributions commonly encountered in the study of financial returns. The expansion coefficients can be calibrated from observed option prices and can also be computed, for example, in models with the probability density function or the characteristic function known in closed form. We investigate the properties of the new option pricing model by calibrating it to both real-world and simulated option prices and find that the resulting implied volatility curves provide an accurate approximation for a wide range of strike prices. Based on an extensive empirical study, we conclude that the new approximation method outperforms other methods both in-sample and out-of-sample.

  相似文献   

3.
Multiscale stochastic volatility models have been developed as an efficient way to capture the principal effects on derivative pricing and portfolio optimization of randomly varying volatility. The recent book by Fouque et al. (Multiscale Stochastic Volatility for Equity, Interest-Rate and Credit Derivatives, 2011) analyzes models in which the volatility of the underlying is driven by two diffusions – one fast mean-reverting and one slowly varying – and provides a first order approximation for European option prices and for the implied volatility surface, which is calibrated to market data. Here, we present the full second order asymptotics, which are considerably more complicated due to a terminal layer near the option expiration time. We find that to second order, the implied volatility approximation depends quadratically on log-moneyness, capturing the convexity of the implied volatility curve seen in data. We introduce a new probabilistic approach to the terminal layer analysis needed for the derivation of the second order singular perturbation term, and calibrate to S&P 500 options data.  相似文献   

4.
This paper specifies a multivariate stochasticvolatility (SV) model for the S & P500 index and spot interest rateprocesses. We first estimate the multivariate SV model via theefficient method of moments (EMM) technique based on observations ofunderlying state variables, and then investigate the respective effects of stochastic interest rates, stochastic volatility, and asymmetric S & P500 index returns on option prices. We compute option prices using both reprojected underlying historical volatilities and the implied risk premiumof stochastic volatility to gauge each model's performance through direct comparison with observed market option prices on the index. Our major empirical findings are summarized as follows. First, while allowing for stochastic volatility can reduce the pricing errors and allowing for asymmetric volatility or leverage effect does help to explain the skewness of the volatility smile, allowing for stochastic interest rates has minimal impact on option prices in our case. Second, similar to Melino and Turnbull (1990), our empirical findings strongly suggest the existence of a non-zero risk premium for stochastic volatility of asset returns. Based on the implied volatility risk premium, the SV models can largely reduce the option pricing errors, suggesting the importance of incorporating the information from the options market in pricing options. Finally, both the model diagnostics and option pricing errors in our study suggest that the Gaussian SV model is not sufficientin modeling short-term kurtosis of asset returns, an SV model withfatter-tailed noise or jump component may have better explanatory power.  相似文献   

5.
We study the cross-sectional performance of option pricing models in which the volatility of the underlying stock is a deterministic function of the stock price and time. For each date in our sample of FTSE 100 index option prices, we fit an implied binomial tree to the panel of all European style options with different strike prices and maturities and then examine how well this model prices a corresponding panel of American style options. We find that the implied binomial tree model performs no better than an ad-hoc procedure of smoothing Black–Scholes implied volatilities across strike prices and maturities. Our cross-sectional results complement the time-series findings of Dumas et al. [J. Finance 53 (1998) 2059].  相似文献   

6.
We examine the economic benefits of using realized volatility to forecast future implied volatility for pricing, trading, and hedging in the S&P 500 index options market. We propose an encompassing regression approach to forecast future implied volatility, and hence future option prices, by combining historical realized volatility and current implied volatility. Although the use of realized volatility results in superior performance in the encompassing regressions and out-of-sample option pricing tests, we do not find any significant economic gains in option trading and hedging strategies in the presence of transaction costs.  相似文献   

7.
When managers get to trade in options received as compensation, their trading prices reveal several aspects of subjective option pricing and risk preferences. Two subjective pricing models are fitted to show that executive stock option prices incorporate a subjective discount. It depends positively on implied volatility and negatively on option moneyness. Further, risk preferences are estimated using the semiparametric model of Aït-Sahalia and Lo (2000). The results suggest that relative risk aversion is just above 1 for a certain stock price range. This level of risk aversion is low but reasonable, and it may be explained by the typical manager being wealthy and having low marginal utility. Related to risk aversion, it is found that marginal rate of substitution increases considerably in states with low stock prices.  相似文献   

8.
A new framework is developed for pricing currency options in the case where the distribution of exchange rate returns exhibits time-varying volatility and non-normalities. A forward-looking volatility structure is adopted whereby volatility is expressed as a function of currency returns over the life of the contract. Time to maturity and moneyness effects in volatility are also modelled. An analytical solution for the option price is obtained up to a one-dimensional integral in the real plane, enabling option prices to be computed efficiently and accurately. The proposed modelling framework is applied to European currency call options for the UK pound written on the US dollar, over the period October 1997–June 1998. The results show that pricing higher order moments improves both within-sample fit and out-of-sample prediction of observed option prices, as well as having important implications for constructing hedged portfolios and managing risk.  相似文献   

9.
The common practice of using different volatilities for options of different strikes in the Black-Scholes (1973) model imposes inconsistent assumptions on underlying securities. The phenomenon is referred to as the volatility smile. This paper addresses this problem by replacing the Brownian motion or, alternatively, the Geometric Brownian motion in the Black-Scholes model with a two-piece quadratic or linear function of the Brownian motion. By selecting appropriate parameters of this function we obtain a wide range of shapes of implied volatility curves with respect to option strikes. The model has closed-form solutions for European options, which enables fast calibration of the model to market option prices. The model can also be efficiently implemented in discrete time for pricing complex options.
G1  相似文献   

10.
This paper investigates option prices in an incomplete stochastic volatility model with correlation. In a general setting, we prove an ordering result which says that prices for European options with convex payoffs are decreasing in the market price of volatility risk.As an example, and as our main motivation, we investigate option pricing under the class of q-optimal pricing measures. The q-optimal pricing measure is related to the marginal utility indifference price of an agent with constant relative risk aversion. Using the ordering result, we prove comparison theorems between option prices under the minimal martingale, minimal entropy and variance-optimal pricing measures. If the Sharpe ratio is deterministic, the comparison collapses to the well known result that option prices computed under these three pricing measures are the same.As a concrete example, we specialize to a variant of the Hull-White or Heston model for which the Sharpe ratio is increasing in volatility. For this example we are able to deduce option prices are decreasing in the parameter q. Numerical solution of the pricing pde corroborates the theory and shows the magnitude of the differences in option price due to varying q.JEL Classification: D52, G13  相似文献   

11.
We present a derivative pricing and estimation methodology for a class of stochastic volatility models that exploits the observed 'bursty' or persistent nature of stock price volatility. Empirical analysis of high-frequency S&P 500 index data confirms that volatility reverts slowly to its mean in comparison to the tick-by- tick fluctuations of the index value, but it is fast mean- reverting when looked at over the time scale of a derivative contract (many months). This motivates an asymptotic analysis of the partial differential equation satisfied by derivative prices, utilizing the distinction between these time scales. The analysis yields pricing and implied volatility formulas, and the latter provides a simple procedure to 'fit the skew' from European index option prices. The theory identifies the important group parameters that are needed for the derivative pricing and hedging problem for European-style securities, namely the average volatility and the slope and intercept of the implied volatility line, plotted as a function of the log- moneyness-to-maturity-ratio. The results considerably simplify the estimation procedure. The remaining parameters, including the growth rate of the underlying, the correlation between asset price and volatility shocks, the rate of mean-reversion of the volatility and the market price of volatility risk are not needed for the asymptotic pricing formulas for European derivatives, and we derive the formula for a knock-out barrier option as an example. The extension to American and path-dependent contingent claims is the subject of future work. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
This paper develops a new top-down valuation framework that links the pricing of an option investment to its daily profit and loss attribution. The framework uses the Black-Merton-Scholes option pricing formula to attribute the short-term option investment risk to variation in the underlying security price and the option's implied volatility. Taking risk-neutral expectation and demanding no dynamic arbitrage result in a pricing relation that links an option's fair implied volatility level to the underlying volatility level with corrections for the implied volatility's own expected direction of movement, its variance, and its covariance with the underlying security return.  相似文献   

13.
One-factor Markov models are widely used by practitioners for pricing financial options. Their simplicity facilitates their calibration to the intial conditions and permits fast computer Implementations. Nevertheless, the danger remains that such models behave unrealistically, if the calibration of the volatility is not properly done. Here, we study a lognormal process and investigate how to specify the volatility constraints in such a way that the term structure of volatility at future times, as implied by the short rate process, has a realistic and stable shape. However, the drifting down of the volatility term structure is unavoidable. As a result, there is a tendency to underestimate option prices.  相似文献   

14.
Traders in the nineteenth century appear to have priced options the same way that twenty-first-century traders price options. Empirical regularities relating implied volatility to realized volatility, stock prices, and other implied volatilities (including the volatility skew) are qualitatively the same in both eras. Modern pricing models and centralized exchanges have not fundamentally altered pricing behavior, but they have generated increased trading volume and a much closer conformity in the level of observed and model prices. The major change in pricing is the sharp decline in implied volatility relative to realized volatility, evident immediately upon the opening of the CBOE.  相似文献   

15.
We analyze the volatility surface vs. moneyness and time-to-expiration implied by MIBO options written on the MIB30, the most important Italian stock index. We specify and fit a number of models of the implied volatility surface and find that it has a rich and interesting structure that strongly departs from a constant volatility, Black-Scholes benchmark. This result is robust to alternative econometric approaches, including generalized least squares approaches that take into account both the panel structure of the data and the likely presence of heteroskedasticity and serial correlation in the random disturbances. Finally we show that the degree of pricing efficiency of this options market can strongly condition the results of the econometric analysis and therefore our understanding of the pricing mechanism underlying observed MIBO option prices. Applications to value-at-risk and portfolio choice calculations illustrate the importance of using arbitrage-free data only.  相似文献   

16.
This paper derives exact formulas for retrieving risk neutral moments of future payoffs of any order from generic European-style option prices. It also provides an exact formula for retrieving the expected quadratic variation of the stock market implied by European option prices, which nowadays is used as an estimate of the implied volatility, and a formula approximating the jump component of this measure of variation. To implement the above formulas to discrete sets of option prices, the paper suggests a numerical procedure and provides upper bounds of its approximation errors. The performance of this procedure is evaluated through a simulation and an empirical exercise. Both of these exercises clearly indicate that the suggested numerical procedure can provide accurate estimates of the risk neutral moments, over different horizons ahead. These can be in turn employed to obtain accurate estimates of risk neutral densities and calculate option prices, efficiently, in a model-free manner. The paper also shows that, in contrast to the prevailing view, ignoring the jump component of the underlying asset can lead to seriously biased estimates of the new volatility index suggested by the Chicago Board Options Exchange.  相似文献   

17.
Implied volatilities are frequently used to quote the prices of options. The implied volatility of a European option on a particular asset as a function of strike price and time to maturity is known as the asset's volatility surface. Traders monitor movements in volatility surfaces closely. In this paper we develop a no-arbitrage condition for the evolution of a volatility surface. We examine a number of rules of thumb used by traders to manage the volatility surface and test whether they are consistent with the no-arbitrage condition and with data on the trading of options on the S&P 500 taken from the over-the-counter market. Finally we estimate the factors driving the volatility surface in a way that is consistent with the no-arbitrage condition.  相似文献   

18.
Substantial progress has been made in developing more realistic option pricing models. Empirically, however, it is not known whether and by how much each generalization improves option pricing and hedging. We fill this gap by first deriving an option model that allows volatility, interest rates and jumps to be stochastic. Using S&P 500 options, we examine several alternative models from three perspectives: (1) internal consistency of implied parameters/volatility with relevant time-series data, (2) out-of-sample pricing, and (3) hedging. Overall, incorporating stochastic volatility and jumps is important for pricing and internal consistency. But for hedging, modeling stochastic volatility alone yields the best performance.  相似文献   

19.
We treat the problem of option pricing under a stochastic volatility model that exhibits long-range dependence. We model the price process as a Geometric Brownian Motion with volatility evolving as a fractional Ornstein–Uhlenbeck process. We assume that the model has long-memory, thus the memory parameter H in the volatility is greater than 0.5. Although the price process evolves in continuous time, the reality is that observations can only be collected in discrete time. Using historical stock price information we adapt an interacting particle stochastic filtering algorithm to estimate the stochastic volatility empirical distribution. In order to deal with the pricing problem we construct a multinomial recombining tree using sampled values of the volatility from the stochastic volatility empirical measure. Moreover, we describe how to estimate the parameters of our model, including the long-memory parameter of the fractional Brownian motion that drives the volatility process using an implied method. Finally, we compute option prices on the S&P 500 index and we compare our estimated prices with the market option prices.  相似文献   

20.
《Quantitative Finance》2013,13(5):353-362
Abstract

In this paper, we generalize the recently developed dimension reduction technique of Vecer for pricing arithmetic average Asian options. The assumption of constant volatility in Vecer's method will be relaxed to the case that volatility is randomly fluctuating and is driven by a mean-reverting (or ergodic) process. We then use the fast mean-reverting stochastic volatility asymptotic analysis introduced by Fouque, Papanicolaou and Sircar to derive an approximation to the option price which takes into account the skew of the implied volatility surface. This approximation is obtained by solving a pair of one-dimensional partial differential equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号