首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了从酸性加压浸出液中采用溶剂萃取法提取钼工艺,考察了萃取剂浓度、改质剂浓度、萃取相比、萃取时间等对钼萃取率的影响。试验结果表明,在有机相组成25%N235+5%异辛醇+磺化煤油,O/A=3/1,混合时间3min的条件下,钼的萃取率可达到98%以上;负栽有机相采用20%的氨水反萃,O/A=1/3.在两级逆流萃取的条件下钼反萃率超过98%。  相似文献   

2.
采用溶剂萃取法对蛇纹石尾矿酸性浸出液中的金属进行了萃取分离的研究。采用2-乙基己基膦酸单2-乙基己基酯(P507)萃取剂萃取浸出液中的Fe(Ⅲ)、Al(Ⅲ)和Ca(Ⅱ),使其与Ni(Ⅱ)、Mg(Ⅱ)分离,考察了P507浓度、皂化率、浸取液酸度及反萃剂浓度对各金属离子分离的影响,获得了最佳实验条件。之后用环烷酸提取Ni(Ⅱ),使其与Mg(Ⅱ)分离,考察了环烷酸萃取剂浓度、萃取级数、萃取时间及反萃剂浓度、相比和反萃级数对镍提取分离的影响。结果表明在适宜的萃取条件下可实现各金属之间的分离提纯,为蛇纹石尾矿的再利用提供了一条途径。  相似文献   

3.
Pt-Re/Al2O3催化剂是一种石油重整催化剂,失效Pt-Re/Al2O3催化剂含有较多稀有金属,具有很大的潜在回收价值。本文采用碱焙烧-水浸法从失效石油重整催化剂中回收铂和铼,考察浸出温度对铼浸出的影响,分析水浸过程中还原剂对铂浸出的抑制作用。失效催化剂经焙烧除炭和碱焙烧预处理后进行水浸,铼的一次浸出率达到58.27%。浸出过程加入水合肼和甲酸钠抑制铂的分散,铂在浸出液中的含量约为0.59%。催化剂中的铼得到有效浸出,而铂几乎不分散,富集在渣中,达到铂铼分离的目的。  相似文献   

4.
离子交换法从烟道灰中提取铼的工艺研究   总被引:1,自引:0,他引:1  
本工艺提出了一种从钼冶炼烟道灰中湿法回收铼的方法,过程中采用在稀硫酸体系中氧化浸出铼,水解及硫化法二段除钼,离子交换法富集铼,高氯酸淋洗,重结晶法精制,铼酸钾氢还原,铼的总回收率可达90%以上,有价金属得到了充分利用。  相似文献   

5.
本文对铜冶炼过程中产出的砷滤饼进行了加压浸出试验研究。研究表明,砷滤饼以白烟尘浸出液为溶剂,控制反应条件为温度85~140 ℃、硫酸酸度80~150 g/L、氧压0.9~1.2 MPa、液固比9∶1~11∶1、时间3~4 h,浸出效果较好,砷、铼的浸出率均可达到95%左右。  相似文献   

6.
对氧化铜矿进行了硫酸搅拌浸出试验研究。考察了浸出温度、硫酸用量、浸出时间、矿石粒度对浸出的影响。研究结果表明,在反应温度为60℃,硫酸用量180 kg酸/t矿,浸出时间2 h,液固比2/1,矿石粒度-200目占比约70%的条件下,Cu浸出率约82%,浸出液含Cu约17 g/L,浸出终点酸度约10 g/L,满足后续萃取工艺条件。  相似文献   

7.
钛白废酸回收技术研究   总被引:1,自引:0,他引:1  
通过臭氧氧化技术将钛白废酸中的Fe2 氧化成Fe3 ,再用萃取法除去Fe3 。考察了络合剂(盐酸)浓度、萃取剂、萃取相比和多级错流萃取级数等对Fe3 萃取率的影响,初步探索了反萃法回收萃取剂及萃取剂的循环利用。结果表明,当盐酸浓度为3.4~4.0mol/L时,几乎可完全络合溶液中的Fe3 ,Fe3 的萃取率随相比(O/W)的增加而增大,萃取级数愈多萃取效果愈好。O/W=1∶1的单级萃取与总相比O/W=0.5∶1的四级错流萃取率接近。当反萃相比(W/O)=1.5∶1时,Fe3 的反萃率达97%,萃取剂经过6次萃取—反萃循环后,Fe3 的萃取率没有明显下降。去除Fe3 后的钛白废酸,经蒸馏浓缩到70%左右,再与浓硫酸混合后可用于钛白粉的生产,蒸馏过程中得到的盐酸循环使用,反萃出来的Fe3 可作为生产铁红的原料。  相似文献   

8.
本文采用铜渣法脱除锌电解液中的氯,并考察了反应温度、溶液酸度、铜渣用量、初始铜离子浓度和反应时间对除氯效果的影响,以优化除氯工艺参数。试验结果表明,在初始溶液硫酸酸度10 g/L,反应温度60℃,铜渣3倍理论用量,溶液初始铜离子浓度1.5 g/L,反应时间1 h的优化条件下,溶液中氯离子脱除效果好,氯离子脱除率可达88%,溶液中氯离子含量降至74 mg/L,满足电解要求。  相似文献   

9.
废镍钼催化剂低温焙烧常压碱浸试验研究   总被引:1,自引:0,他引:1  
主要探讨了废镍钼催化剂的焙烧-碱浸出的工艺条件.首先采用低温焙烧,再用碳酸钠漫取.分析了焙烧条件、浸取条件对浸取率的影响.试验结果表明:在焙烧温度为650℃、焙烧时间为3h、碳酸钠浓度为30g/L、浸取温度85℃、浸取时间3h、液固比为6∶1时,钼的浸取率达到90%以上,铝浸取率在3%以下(浸出液中铝浓度低于0.01g/L).该工艺具有能耗低,浸取率高等优点,具有潜在的应用前景.  相似文献   

10.
铼作为一种稀散金属,在铜双闪速悬浮熔炼过程中分散在各种副产物中,其在污酸和砷滤饼中的富集度较高,人们可以通过氧化焙烧、高压浸出、离心萃取等工艺流程对铼金属进行有效回收。  相似文献   

11.
用氯仿对含酚废水进行了萃取及反萃取实验,并研究了回收氯仿对废水萃取处理的效果以及多级萃取对萃取率的影响,得到的最佳萃取条件为:时间为20 min;废水与氯仿比例为1∶1;pH值为6,温度为室温(20℃左右)。此时萃取率为83.68%,氯仿的回收率为95%左右,通过三级萃取实验得到总的萃取率为95.54%。  相似文献   

12.
研究了在钨冶炼工艺中对钨锡混合精矿中钨锡分离的工艺,依据矿物物相分析结果,进行了一步碱浸的条件试验,考察了浸出时间、温度、碱浓度、液固比等因素对锡分离的影响。在高的钨浸出率前提条件下,确定分离锡的综合试验条件为:时间5 h、30%的碱浓度、液固比为6∶1、温度为95℃。此条件下WO3浸出率可达95.97%,溶液中Sn含量0.6 mg/L,实现了钨锡的分离,所得碱浸液可以直接进入APT的生产流程,Sn含量达到国家标准。  相似文献   

13.
本研究以某含钴黄铁矿为原料,采用硫酸化焙烧浸出工艺来回收钴。其间通过试验对焙烧添加剂用量、焙烧温度、浸出酸度、浸出温度和浸出时间对浸出率的影响进行了探究。添加剂采用9%硫酸钠,焙烧时间为3 h,浸出液固比为3,浸出溶液为30 g/L硫酸,浸出温度为80 ℃,浸出时间为5 h,最终得到的钴浸出率为89.35%。  相似文献   

14.
采用泡沫分离法对模拟废水中的铅镍离子进行了去除实验,研究了废水气流速度、pH值、表面活性剂浓度、分离时间等因素对分离效果的影响.结果表明,利用十二烷基硫酸钠为表面活性剂(SDS),当pH值为9.0、气速为300 ml/min时,若SDS浓度为10mg/L,镍离子达到最大去除率;若SDS浓度为20 mg/L,铅离子分离率最佳,残液废水可以达到排放标准.  相似文献   

15.
在一定条件下将 Rh,Ir 同时转变为Rh(Ⅲ),Ir(Ⅱ)转变为水合阳离子,而 Pt(Ⅳ)仍保持在 Pt Cl~(2-)_6状态,用N235萃取 PtCl_6~(2-),即实现与 Rh,Ir 分离。本文对这一过程的萃取、洗涤和反萃取等进行了研究,并从工业料液中制备了纯度为99.99%的 Pt,其直收率达99%。  相似文献   

16.
辉钼矿分布范围广泛,工业价值高,约99%的钼以辉钼矿形态存在。辉钼矿处理主要采用氧化焙烧-氨浸工艺制备钼酸铵,经氧化焙烧后辉钼矿中的二硫化钼转化为易溶于氨水的三氧化钼。氧化焙烧是该工艺的关键,辉钼矿的氧化率决定了后续氨浸钼的浸出率和回收率。本文对辉钼矿的氧化焙烧过程进行研究,通过试验确定了焙烧温度、时间以及粒度对辉钼矿焙烧效果的影响规律,发现辉钼矿在600℃条件下焙烧60 min,氧化率可达99%。  相似文献   

17.
以废TFT-LCDs面板酸浸液为研究对象,对其进行浓缩、萃取,分析回收铟过程中的影响因素。研究表明,随着浸出液浓缩倍数的增加,P204萃取In3+的能力下降。通过调整浓缩液酸度,In3+的萃取率可达99%以上。伴随In3+同步浸出的Fe3+、B3+、Al3+对铟萃取产生一定的影响,但是单一离子对萃取率的影响低于5%。  相似文献   

18.
对从印刷线路板(PCB)浸出液中提取铜做了一系列研究。通过降酸处理得到适合萃取的浸出液,考察了不同相比对铜萃取率和反萃率的影响,并对浸出液的杂质含量进行了分析测定。结果表明:将硫酸介质的浸出液蒸发结晶后的硫酸铜晶体用水重新溶解,所得的待萃液酸度降低,达到萃取条件。在相比O/A=2∶1下,萃取6级,总萃取率可达99.7%。用3mol·L-1的H2SO4,相比O/A=2∶1经过4级反萃,总的反萃率可达98.08%。含铜反萃液经处理后,得到纯度为98.5%的硫酸铜产品。  相似文献   

19.
试验考察了酸量、浸出温度、矿浆浓度和浸出时间等因素对镍、钴、铁浸出率的影响。试验结果表明,镍、钴、铁浸出率随着酸量的增加而提高,但酸量过大会造成酸耗大、铁浸出率升高,加大后续沉铁的困难;升高温度,镍、钴、铁的浸出率均有所增加,温度大于85℃后,增加幅度不明显;矿浆浓度和浸出时间对镍、钴、铁的浸出率影响较小。本试验最优化条件为:酸矿比(t/t矿)为1.2、浸出温度95℃、矿浆浓度33%、浸出时间3 h。在此条件下,镍、钴、铁的浸出率分别为97.43%、88.56%、85.68%。  相似文献   

20.
稀散金属镓锗提取新工艺研究   总被引:2,自引:0,他引:2  
为了更好地于湿法炼锌过程中回收镓、锗,研究采用一种新型镓、锗萃取剂G3815,实现分步萃取分离酸性水溶液锗和镓。研究表明,通过水相酸度调节,镓、堵的萃取率可分别达到92%和98%,使镓、锗浸出-萃取实现闭路循环。省去了碱中和工序,降低了碱耗、酸耗,减少了废水排放。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号