首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We introduce a new analytical approach to price American options. Using an explicit and intuitive proxy for the exercise rule, we derive tractable pricing formulas using a short-maturity asymptotic expansion. Depending on model parameters, this method can accurately price options with time-to-maturity up to several years. The main advantage of our approach over existing methods lies in its straightforward extension to models with stochastic volatility and stochastic interest rates. We exploit this advantage by providing an analysis of the impact of volatility mean-reversion, volatility of volatility, and correlations on the American put price.  相似文献   

2.
Summary We explicitly solve the pricing problem for perpetual American puts and calls, and provide an efficient semi-explicit pricing procedure for options with finite time horizon. Contrary to the standard approach, which uses the price process as a primitive, we model the price process as the expected present value of a stream, which is a monotone function of a Lévy process. Certain processes exhibiting mean-reverting, stochastic volatility and/or switching features can be modeled this way. This specification allows us to consider assets that pay no dividends at all when the level of the underlying stochastic factor is too low, assets that pay dividends at a fixed rate when the underlying stochastic process remains in some range, or capped dividends.The authors are grateful to the anonymous referees for valuable comments and suggestions.  相似文献   

3.
In this paper, as a generalization of the Black–Scholes (BS) model, we elaborate a new closed-form solution for a uni-dimensional European option pricing model called the J-model. This closed-form solution is based on a new stochastic process, called the J-process, which is an extension of the Wiener process satisfying the martingale property. The J-process is based on a new statistical law called the J-law, which is an extension of the normal law. The J-law relies on four parameters in its general form. It has interesting asymmetry and tail properties, allowing it to fit the reality of financial markets with good accuracy, which is not the case for the normal law. Despite the use of one state variable, we find results similar to those of Heston dealing with the bi-dimensional stochastic volatility problem for pricing European calls. Inverting the BS formula, we plot the smile curve related to this closed-form solution. The J-model can also serve to determine the implied volatility by inverting the J-formula and can be used to price other kinds of options such as American options.  相似文献   

4.
We develop a discrete-time stochastic volatility option pricing model exploiting the information contained in the Realized Volatility (RV), which is used as a proxy of the unobservable log-return volatility. We model the RV dynamics by a simple and effective long-memory process, whose parameters can be easily estimated using historical data. Assuming an exponentially affine stochastic discount factor, we obtain a fully analytic change of measure. An empirical analysis of Standard and Poor's 500 index options illustrates that our model outperforms competing time-varying and stochastic volatility option pricing models.  相似文献   

5.
This study examines several alternative symmetric and asymmetric model specifications of regression-based deterministic volatility models to identify the one that best characterizes the implied volatility functions of S&P 500 Index options in the period 1996–2009. We find that estimating the models with nonlinear least squares, instead of ordinary least squares, always results in lower pricing errors in both in- and out-of-sample comparisons. In-sample, asymmetric models of the moneyness ratio estimated separately on calls and puts provide the overall best performance. However, separating calls from puts violates the put-call-parity and leads to severe model mis-specification problems. Out-of-sample, symmetric models that use the logarithmic transformation of the strike price are the overall best ones. The lowest out-of-sample pricing errors are observed when implied volatility models are estimated consistently to the put-call-parity using the joint data set of out-of-the-money options. The out-of-sample pricing performance of the overall best model is shown to be resilient to extreme market conditions and compares quite favorably with continuous-time option pricing models that admit stochastic volatility and random jump risk factors.  相似文献   

6.
Pricing Options under Generalized GARCH and Stochastic Volatility Processes   总被引:5,自引:0,他引:5  
In this paper, we develop an efficient lattice algorithm to price European and American options under discrete time GARCH processes. We show that this algorithm is easily extended to price options under generalized GARCH processes, with many of the existing stochastic volatility bivariate diffusion models appearing as limiting cases. We establish one unifying algorithm that can price options under almost all existing GARCH specifications as well as under a large family of bivariate diffusions in which volatility follows its own, perhaps correlated, process.  相似文献   

7.
This paper proposes a new approximation method for pricing barrier options with discrete monitoring under stochastic volatility environment. In particular, the integration-by-parts formula and the duality formula in Malliavin calculus are effectively applied in pricing barrier options with discrete monitoring. To the best of our knowledge, this paper is the first one that shows an analytical approximation for pricing discrete barrier options with stochastic volatility models. Furthermore, it provides numerical examples for pricing double barrier call options with discrete monitoring under Heston and λ-SABR models.  相似文献   

8.
Abstract

The paper describes an alternative options pricing method which uses a binomial tree linked to an innovative stochastic volatility model. The volatility model is based on wavelets and artificial neural networks. Wavelets provide a convenient signal/noise decomposition of the volatility in the nonlinear feature space. Neural networks are used to infer future volatility from the wavelets feature space in an iterative manner. The bootstrap method provides the 95% confidence intervals for the options prices. Market options prices as quoted on the Chicago Board Options Exchange are used for performance comparison between the Black‐Scholes model and a new options pricing scheme. The proposed dynamic volatility model produces as good as and often better options prices than the conventional Black‐Scholes formulae.  相似文献   

9.
This study integrates CBOE VIX Term Structure and VIX futures to simplify VIX option pricing in multifactor models. Exponential and hump volatility functions with one- to three-factor models of the VIX evolution are used to examine their pricing for VIX options across strikes and maturities. The results show that using exponential volatility functions presents an effective choice as pricing models for VIX calls, whereas hump volatility functions provide efficient out-of-sample valuation for most VIX puts, in particular with deep in-the-money and deep out-of-the-money. Pricing errors for calls can be further reduced with a two-factor model.  相似文献   

10.
We present a quasi-analytical method for pricing multi-dimensional American options based on interpolating two arbitrage bounds, along the lines of Johnson in J Financ Quant Anal 18(1):141–148 (1983). Our method allows for the close examination of the interpolation parameter on a rigorous theoretical footing instead of empirical regression. The method can be adapted to general diffusion processes as long as quick and accurate pricing methods exist for the corresponding European and perpetual American options. The American option price is shown to be approximately equal to an interpolation of two European option prices with the interpolation weight proportional to a perpetual American option. In the Black-Scholes model, our method achieves the same efficiency as the quadratic approximation of Barone-Adesi and Whaley in J Financ 42:301–320 (1987), with our method being generally more accurate for out-of-the-money and long-maturity options. When applied to Heston’s stochastic volatility model, our method is shown to be extremely efficient and fairly accurate.  相似文献   

11.
This article investigates the extent to which options on theAustralian Stock Price Index can be explained by parametricand nonparametric option pricing techniques. In particular,comparisons are made of out-of-sample option pricing performanceand hedging performance. The dataset differs from many of thoseused previously in the empirical options pricing literaturein that it consists of American options. In addition, a broaderspectrum of techniques are considered: a spline-based nonparametrictechnique is considered in addition to the standard kernel techniques,while the performance of a Heston stochastic volatility modelis also considered. Although some evidence is found of superiorperformance by nonparametric techniques for in-sample pricing,the parametric methods exhibit a markedly better ability toexplain future prices and show superior hedging performance.  相似文献   

12.
Financial models with stochastic volatility or jumps play a critical role as alternative option pricing models for the classical Black–Scholes model, which have the ability to fit different market volatility structures. Recently, machine learning models have elicited considerable attention from researchers because of their improved prediction accuracy in pricing financial derivatives. We propose a generative Bayesian learning model that incorporates a prior reflecting a risk-neutral pricing structure to provide fair prices for the deep ITM and the deep OTM options that are rarely traded. We conduct a comprehensive empirical study to compare classical financial option models with machine learning models in terms of model estimation and prediction using S&P 100 American put options from 2003 to 2012. Results indicate that machine learning models demonstrate better prediction performance than the classical financial option models. Especially, we observe that the generative Bayesian neural network model demonstrates the best overall prediction performance.  相似文献   

13.
In this paper we study the pricing and hedging of options on realized variance in the 3/2 non-affine stochastic volatility model by developing efficient transform-based pricing methods. This non-affine model gives prices of options on realized variance that allow upward-sloping implied volatility of variance smiles. Heston's model [Rev. Financial Stud., 1993, 6, 327–343], the benchmark affine stochastic volatility model, leads to downward-sloping volatility of variance smiles—in disagreement with variance markets in practice. Using control variates, we propose a robust method to express the Laplace transform of the variance call function in terms of the Laplace transform of the realized variance. The proposed method works in any model where the Laplace transform of realized variance is available in closed form. Additionally, we apply a new numerical Laplace inversion algorithm that gives fast and accurate prices for options on realized variance, simultaneously at a sequence of variance strikes. The method is also used to derive hedge ratios for options on variance with respect to variance swaps.  相似文献   

14.
Ritchken and Trevor (1999) proposed a lattice approach for pricing American options under discrete time-varying volatility GARCH frameworks. Even though the lattice approach worked well for the pricing of the GARCH options, it was inappropriate when the option price was computed on the lattice using standard backward recursive procedures, even if the concepts of Cakici and Topyan (2000) were incorporated. This paper shows how to correct the deficiency and that with our adjustment, the lattice method performs properly for option pricing under the GARCH process. JEL Classification: C10, C32, C51, F37, G12  相似文献   

15.
An efficient method is developed for pricing American optionson stochastic volatility/jump-diffusion processes under systematicjump and volatility risk. The parameters implicit in deutschemark (DM) options of the model and various submodels are estimatedover the period 1984 to 1991 via nonlinear generalized leastsquares, and are tested for consistency with $/DM futures pricesand the implicit volatility sample path. The stochastic volatilitysubmodel cannot explain the 'volatility smile' evidence of implicitexcess kurtosis, except under parameters implausible given thetime series properties of implicit volatilities. Jump fearscan explain the smile, and are consistent with one 8 percentDM appreciation 'outlier' observed over the period 1984 to 1991.  相似文献   

16.
Compound options are not only sensitive to future movements of the underlying asset price, but also to future changes in volatility levels. Because the Black–Scholes analytical valuation formula for compound options is not able to incorporate the sensitivity to volatility, the aim of this paper is to develop a numerical pricing procedure for this type of option in stochastic volatility models, specifically focusing on the model of Heston. For this, the compound option value is represented as the difference of its exercise probabilities, which depend on three random variables through a complex functional form. Then the joint distribution of these random variables is uniquely determined by their characteristic function and therefore the probabilities can each be expressed as a multiple inverse Fourier transform. Solving the inverse Fourier transform with respect to volatility, we can reduce the pricing problem from three to two dimensions. This reduced dimensionality simplifies the application of the fast Fourier transform (FFT) method developed by Dempster and Hong when transferred to our stochastic volatility framework. After combining their approach with a new extension of the fractional FFT technique for option pricing to the two-dimensional case, it is possible to obtain good approximations to the exercise probabilities. The resulting upper and lower bounds are then compared with other numerical methods such as Monte Carlo simulations and show promising results.  相似文献   

17.
Substantial progress has been made in developing more realistic option pricing models. Empirically, however, it is not known whether and by how much each generalization improves option pricing and hedging. We fill this gap by first deriving an option model that allows volatility, interest rates and jumps to be stochastic. Using S&P 500 options, we examine several alternative models from three perspectives: (1) internal consistency of implied parameters/volatility with relevant time-series data, (2) out-of-sample pricing, and (3) hedging. Overall, incorporating stochastic volatility and jumps is important for pricing and internal consistency. But for hedging, modeling stochastic volatility alone yields the best performance.  相似文献   

18.
We study the extent to which credit index (CDX) options are priced consistent with S&P 500 (SPX) equity index options. We derive analytical expressions for CDX and SPX options within a structural credit-risk model with stochastic volatility and jumps using new results for pricing compound options via multivariate affine transform analysis. The model captures many aspects of the joint dynamics of CDX and SPX options. However, it cannot reconcile the relative levels of option prices, suggesting that credit and equity markets are not fully integrated. A strategy of selling CDX volatility yields significantly higher excess returns than selling SPX volatility.  相似文献   

19.
This paper describes European-style valuation and hedging procedures for a class of knockout barrier options under stochastic volatility. A pricing framework is established by applying mean self-financing arguments and the minimal equivalent martingale measure. Using appropriate combinations of stochastic numerical and variance reduction procedures we demonstrate that fast and accurate valuations can be obtained for down-and-out call options for the Heston model.  相似文献   

20.
We consider the pricing of FX, inflation and stock options under stochastic interest rates and stochastic volatility, for which we use a generic multi-currency framework. We allow for a general correlation structure between the drivers of the volatility, the inflation index, the domestic (nominal) and the foreign (real) rates. Having the flexibility to correlate the underlying FX/inflation/stock index with both stochastic volatility and stochastic interest rates yields a realistic model that is of practical importance for the pricing and hedging of options with a long-term exposure. We derive explicit valuation formulas for various securities, such as vanilla call/put options, forward starting options, inflation-indexed swaps and inflation caps/floors. These vanilla derivatives can be valued in closed form under Schöbel and Zhu [Eur. Finance Rev., 1999, 4, 23–46] stochastic volatility, whereas we devise an (Monte Carlo) approximation in the form of a very effective control variate for the general Heston [Rev. Financial Stud., 1993, 6, 327–343] model. Finally, we investigate the quality of this approximation numerically and consider a calibration example to FX and inflation market data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号